Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Research

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 131 - 131
4 Apr 2023
Korcari A Nichols A Loiselle A
Full Access

Depletion of Scleraxis-lineage (ScxLin) cells in adult tendon recapitulates age-related decrements in cell density, ECM organization and composition. However, depletion of ScxLin cells improves tendon healing, relative to age-matched wildtype mice, while aging impairs healing. Therefore, we examined whether ScxLin depletion and aging result in comparable shifts in the tendon cell environment and defined the intrinsic programmatic shifts that occur with natural aging, to define the key regulators of age-related healing deficits.

ScxLin cells were depleted in 3M-old Scx-Cre+; Rosa-DTRF/+ mice via diphtheria toxin injections into the hindpaw. Rosa-DTRF/+ mice were used as wildtype (WT) controls. Tendons were harvested from 6M-old ScxLin depleted and WT mice, and 21-month-old (21M) C57Bl/6 mice (aged). FDL tendons (n=6) were harvested for single-cell RNAseq, pooled, collagenase digested, and sorted for single cell capture. Data was processed using Cell Ranger and then aligned to the annotated mouse genome (mm10). Filtering, unsupervised cell clustering, and differential gene expression (DEG) analysis were performed using Seurat.

Following integration and sub-clustering of the tenocyte populations, five distinct subpopulations were observed. In both ScxLin depletion and aging, ‘ECM synthesizers’ and ‘ECM organizers’ populations were lost, consistent with disruptions in tissue homeostasis and altered ECM composition. However, in ScxLin depleted mice retention of a ‘specialized ECM remodeler’ population was observed, while aging tendon cells demonstrated inflammatory skewing with retention of a ‘pro-inflammatory tenocyte population’. In addition, enrichment of genes associated with protein misfolding clearance were observed in aged tenocytes. Finally, a similar inflammatory skewing was observed in aged tendon-resident macrophages, with this skewing not observed in ScxLin depleted tendons.

These data suggest that loss of ‘ECM synthesizer’ populations underpins disruptions in tendon homeostasis. However, retention of ‘specialized remodelers’ promotes enhanced healing (ScxLin depletion), while inflammatory skewing may drive the impaired healing response in aged tendons.