header advert
Results 1 - 10 of 10
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 20 - 20
1 Dec 2022
Ng G El Daou H Bankes M Cobb J Beaulé P
Full Access

Femoroacetabular impingement (FAI) – enlarged, aspherical femoral head deformity (cam-type) or retroversion/overcoverage of the acetabulum (pincer-type) – is a leading cause for early hip osteoarthritis. Although anteverting/reverse periacetabular osteotomy (PAO) to address FAI aims to preserve the native hip and restore joint function, it is still unclear how it affects joint mobility and stability. This in vitro cadaveric study examined the effects of surgical anteverting PAO on range of motion and capsular mechanics in hips with acetabular retroversion.

Twelve cadaveric hips (n = 12, m:f = 9:3; age = 41 ± 9 years; BMI = 23 ± 4 kg/m2) were included in this study. Each hip was CT imaged and indicated acetabular retroversion (i.e., crossover sign, posterior wall sign, ischial wall sign, retroversion index > 20%, axial plane acetabular version < 15°); and showed no other abnormalities on CT data. Each hip was denuded to the bone-and-capsule and mounted onto a 6-DOF robot tester (TX90, Stäubli), equipped with a universal force-torque sensor (Omega85, ATI). The robot positioned each hip in five sagittal angles: Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°; and performed hip internal-external rotations and abduction-adduction motions to 5 Nm in each position. After the intact stage was tested, each hip underwent an anteverting PAO, anteverting the acetabulum and securing the fragment with long bone screws. The capsular ligaments were preserved during the surgery and each hip was retested postoperatively in the robot. Postoperative CT imaging confirmed that the acetabular fragment was properly positioned with adequate version and head coverage. Paired sample t-tests compared the differences in range of motion before and after PAO (CI = 95%; SPSS v.24, IBM).

Preoperatively, the intact hips with acetabular retroversion demonstrated constrained internal-external rotations and abduction-adduction motions. The PAO reoriented the acetabular fragment and medialized the hip joint centre, which tightened the iliofemoral ligament and slackenend the pubofemoral ligament. Postoperatively, internal rotation increased in the deep hip flexion positions of Flexion 60° (∆IR = +7°, p = 0.001) and Flexion 90° (∆IR = +8°, p = 0.001); while also demonstrating marginal decreases in external rotation in all positions. In addition, adduction increased in the deep flexion positions of Flexion 60° (∆ADD = +11°, p = 0.002) and Flexion 90° (∆ADD = +12°, p = 0.001); but also showed marginal increases in abduction in all positions.

The anteverting PAO restored anterosuperior acetabular clearance and increased internal rotation (28–33%) and adduction motions (29–31%) in deep hip flexion. Restricted movements and positive impingement tests typically experienced in these positions with acetabular retroversion are associated with clinical symptoms of FAI (i.e., FADIR). However, PAO altered capsular tensions by further tightening the anterolateral hip capsule which resulted in a limited external rotation and a stiffer and tighter hip. Capsular tightness may still be secondary to acetabular retroversion, thus capsular management may be warranted for larger corrections or rotational osteotomies. In efforts to optimize surgical management and clinical outcomes, anteverting PAO is a viable option to address FAI due to acetabular retroversion or overcoverage.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_14 | Pages 6 - 6
1 Nov 2021
Edwards T Maslivec A Ng G Woringer M Wiik A Cobb J
Full Access

Patients may be able to return to higher level activities following hip arthroplasty with modern techniques and prostheses, but the Oxford hip score, the standard PROM used by the NJS exhibits severe skew and kurtosis. The commonest score is 48/48. Most patients score above 40 preventing any discrimination between approaches or prostheses. We therefore sought both subjective and objective metrics which were relevant and valid without skew or high kurtosis in postoperative patients. The Metabolic Equivalent of Task (MET) reports energy usage in kcal/min burnt across a range of activities, condensed into a score of 0–25. A MET over 8 is considered ‘conditioning exercise’ tethered to life expectancy. A 2 point difference in average MET is considered a clinically relevant difference. Walking speed is a simple valid metric tethered to life expectancy, with a 0.1m/sec difference in walking speed equates to a clinically important difference.

Oxford Hip Score (OHS), and the MET were prospectively recorded in 221 primary hip arthroplasty procedures pre-operatively and at 1-year using a web based application. Pre and postoperative Gait analysis was undertaken on a subgroup of 34 patients, in comparison with age and sex matched controls.

Post-operatively, the OHS demonstrated significant skewed distributions with ceiling effects of 41% scoring 48/48. The MET was normally distributed around a mean of 10.3, with a standard deviation of 3.8 and no ceiling effect. Walking speed was normally distributed around a mean of 1.8m/sec, with a standard deviation was 0.15 m/sec

The MET is a simple patient reported score, which is normally distributed in patients following hip arthroplasty, around a mean of 10.3 with a standard deviation of 3.8. This valid activity metric correlates well with fast walking speed. This is also normally distributed with a standard deviation of over 0.1m/sec confirming low kurtosis. These simple measures have face validity: undertaking less active pastimes and being unable to keep up with other walkers are obviously inadvisable. The normal kurtosis of these metrics suggest that they may able to detect clinically relevant differences in outcome which are undetectable with commonly used PROMs. For surgeons developing less invasive approaches or using novel stems, these measures may detect clinically important improvements undetectable by the Oxford Hip Score.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 35 - 35
1 Mar 2021
Ng G Bankes M Daou HE Beaulé P Cobb J Jeffers J
Full Access

Abstract

OBJECTIVES

Although surgical periacetabular osteotomy (PAO) for hip dysplasia aims to optimise acetabular coverage and restore hip function, it is unclear how surgery affects capsular mechanics and joint stability. The purpose was to examine how the reoriented acetabular coverage affects capsular mechanics and joint stability in dysplastic hips.

METHODS

Twelve cadaveric dysplastic hips (n = 12) were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°) and performed internal-external rotations and abduction-adduction to 5 Nm in each rotational or planar direction. Each hip underwent a PAO, preserving the capsule, and was retested postoperatively in the robot. Paired sample t-tests compared the range of motion before and after PAO surgery (CI = 95%).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 18 - 18
1 Mar 2021
Ng G Bankes M Grammatopoulos G Jeffers J Cobb J
Full Access

Abstract

OBJECTIVES

Cam femoroacetabular impingement (FAI – femoral head-neck deformity) and developmental dysplasia of the hip (DDH – insufficient acetabular coverage) constitute a large portion of adverse hip loading and early degeneration. Spinopelvic anatomy may play a role in hip stability thus we examined which anatomical relationships can best predict range of motion (ROM).

METHODS

Twenty-four cadaveric hips with cam FAI or DDH (12:12) were CT imaged and measured for multiple femoral (alpha angles, head-neck offset, neck angles, version), acetabular (centre-edge angle, inclination, version), and spinopelvic features (pelvic incidence). The hips were denuded to the capsule and mounted onto a robotic tester. The robot positioned each hip in multiple flexion angles (Extension, Neutral 0°, Flexion 30°, Flexion 60°, Flexion 90°); and performed internal-external rotations to 5 Nm in each position. Independent t-tests compared the anatomical parameters and ROM between FAI and DDH (CI = 95%). Multiple linear regressions determined which anatomical parameters could predict ROM.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 60 - 60
1 Mar 2021
Munford M Ng G Jeffers J
Full Access

Abstract

Objectives

This study aids the control of remodelling and strain response in bone; providing a quantified map of apparent modulus and strength in the proximal tibia in 3 anatomically relevant directions in terms of apparent density and factor groups.

Methods

7 fresh-frozen cadaveric specimens were quantified computed tomography (qCT) scanned, segmented and packed with 3 layers of 9mm side length cubic cores aligned to anatomical mechanical axes. Cores were removed with printed custom cutting and their densities found from qCT. Cores (n = 195) were quasi-statically compression tested. Modulus was estimated from a load cycle hysteresis loop, between 40% and 20% of yield stress. Sequential testing order in 3 orthogonal directions was randomised. Group differences were identified via an analysis of variance for the factors density, age, gender, testing order, subchondral depth, condyle and sub-meniscal location. Regression models were fit for significant factor sub-groups, predicting properties from density.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 48 - 48
1 Jul 2020
Ng G Daou HE Bankes M y Baena FR Jeffers J
Full Access

Surgical management of cam-type femoroacetabular impingement (FAI) aims to preserve the native hip, restore joint function, and delay the onset of osteoarthritis. However, it is unclear how surgery affects joint mechanics and hip joint stability. The aim was to examine the contributions of each surgical stage (i.e., intact cam hip, capsulotomy, cam resection, capsular repair) towards hip joint centre of rotation and microinstability.

Twelve fresh, frozen cadaveric hips (n = 12 males, age = 44 ± 9 years, BMI = 23 ± 3 kg/m2) were skeletonized to the capsule and included in this study. All hips indicated cam morphology on CT data (axial α = 63 ± 6°, radial α = 74 ± 4°) and were mounted onto a six-DOF industrial robot (TX90, Stäubli). The robot positioned each hip in four sagittal angles: 1) Extension, 2) Neutral 0°, 3) Flexion 30°, and 4) Flexion 90°, and performed internal and external hip rotations until a 5-Nm torque was reached in each direction, while recording the hip joint centre's neutral path of translation. After the (i) intact hip was tested, each hip underwent a series of surgical stages and was retested after each stage: (ii) T-capsulotomy (incised lateral iliofemoral capsular ligament), (iii) cam resection (removed morphology), and (iv) capsular repair (sutured portal incisions). Eccentricity of the hip joint centre was quantified by the microinstability index (MI = difference in rotational foci / femoral head radius). Repeated measures ANOVA and post-hoc paired t-tests compared the within-subject differences in hip joint centre and microinstability index, between the testing stages (CI = 95%, SPSS v.24, IBM).

At the Extension and Neutral positions, the hip joint centre rotated concentrically after each surgical stage. At Flexion 30°, the hip joint centre shifted inferolaterally during external rotation after capsulotomy (p = 0.009), while at Flexion 90°, the hip joint centre further shifted inferolaterally during external rotation (p = 0.005) and slightly medially during internal rotation after cam resection, compared to the intact stages. Consequently, microinstability increased after the capsulotomy at Flexion 30° (MI = +0.05, p = 0.003) and substantially after cam resection at Flexion 90° (MI = +0.07, p = 0.007). Capsular repair was able to slightly restrain the rotational centre and decrease microinstability at the Flexion 30° and 90° positions (MI = −0.03 and −0.04, respectively).

Hip microinstability occurred at higher amplitudes of flexion, with the cam resection providing more intracapsular volume and further lateralizing the hip joint during external rotation. Removing the cam deformity and impingement with the chondrolabral junction also medialized the hip during internal rotation, which can restore more favourable joint loading mechanics and stability. These findings support the pathomechanics of cam FAI and suggest that iatrogenic microinstability may be due to excessive motions, prior to post-operative restoration of static (capsular) and dynamic (muscle) stability. In efforts to limit microinstability, proper nonsurgical management and rehabilitation are essential, while activities that involve larger amplitudes of hip flexion and external rotation should be avoided immediately after surgery.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 1 - 1
1 Jan 2019
Logishetty K Van Arkel R Muirhead-Allwood S Ng G Cobb J Jeffers J
Full Access

The hip's capsular ligaments (CL) passively restrain extreme range of motion (ROM) by wrapping around the native femoral head/neck, and protect against impingement and instability. We compared how CL function was affected by device (hip resurfacing arthroplasty, HRA; dual mobility total hip arthroplasty, DM-THA; and conventional THA, C-THA), and surgical approach (anterior and posterior), with and without CL surgical-repair. We hypothesized that CL function would only be preserved when native head-size (HRA/DM-THA) was restored.

CL function was quantified on sixteen cadaveric hips, by measuring ROM by internally (IR) and externally rotating (ER) the hip in six functional positions, ranging from full extension with abduction to full flexion with adduction (squatting). Native ROM was compared to ROM after posterior capsulotomy (right hips) or anterior capsulotomy (left hips), and HRA, and C-THA and DM-THA, before and after CL repair.

Independent of approach, ROM increased most following C-THA (max 62°), then DM-THA (max 40°), then HRA (max 19°), indicating later CL engagement and reduced biomechanical function with smaller head-size. Dislocations also occurred in squatting after C-THA and DM-THA. CL-repair following HRA restored ROM to the native hip (max 8°). CL-repair following DM-THA reduced ROM hypermobility in flexed positions only and prevented dislocation (max 36°). CL-repair following C-THA did not reduce ROM or prevent dislocation.

For HRA and repair, native anatomy was preserved and ligament function was restored. For DM-THA with repair, ligament function depended on the movement of the mobile-bearing, with increased ROM in positions when ligaments could not wrap around head/neck. For C-THA, the reduced head-size resulted in inferior capsular mechanics in all positions as the ligaments remained slack, irrespective of repair.

Choosing devices with anatomic head-sizes (HRA/DM-THA) with capsular repair may have greater effect than surgical approach to protect against instability in the early postoperative period.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_11 | Pages 11 - 11
1 Aug 2018
Muirhead-Allwood S Logishetty K van Arkel R Ng G Cobb J Jeffers J
Full Access

The hip joint capsular ligaments (CL) passively restrain extreme range of motion (ROM) by wrapping around the native femoral head, and protect against impingement, edge loading wear and dislocation. This study compared how ligament function was affected by device (hip resurfacing arthroplasty, HRA; dual mobility total hip arthroplasty, DM-THA; and conventional THA, C-THA), with and without CL repair. It was hypothesized that ligament function would only be preserved when native anatomy was preserved: with restoration of head-size (HRA or DM-THA) and repair.

Eight normal male cadaveric hips were skeletonised, retaining the hip capsule. CL function was quantified by measuring ROM by internally (IR) and externally rotating (ER) the hip in six functional positions, ranging from full extension with abduction to full flexion with adduction (squatting). Native ROM was compared to ROM after posterior capsulotomy and HRA, and C-THA and DM-THA, before and after surgical CL repair.

ROM increased most following C-THA (max 62°), then DM-THA (max 40°), then HRA (max 19°), indicating later engagement of the capsule and reduced biomechanical function with smaller head-size. Dislocations also occurred in squatting after C-THA and DM-THA. CL-repair following HRA restored ROM to the native hip (max 8°). CL-repair following DM-THA reduced ROM hypermobility in flexed positions only and prevented dislocation (max 36°). CL-repair following C-THA did not reduce ROM or prevent dislocation.

When HRA was combined with repair, native anatomy was preserved and ligament function was restored. For DM-THA with repair, ligament function depended on the movement of the mobile bearing resulting in near-native function in some positions, but increased ROM when ligaments were unable to wrap around the head/neck. Following C-THA, the reduced head-size resulted in inferior capsular mechanics in all positions as the ligaments remained slack, irrespective of repair.

Choosing devices with anatomic head-sizes (resurfacing or dual-mobility) and repairing the capsular ligaments may protect against instability in the early postoperative period.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_9 | Pages 1 - 1
1 May 2018
Grammatopoulos G Speirs A Ng G Riviere C Rakhra K Lamontagne M Beaule PE
Full Access

Introduction

Acetabular and spino-pelvic (SP) morphological parameters are important determinants of hip joint dynamics. This study aims to determine whether acetabular and SP morphological differences exist between hips with and without cam morphology and between symptomatic and asymptomatic hips with cam morphology.

Patients/Materials & Methods

A prospective cohort of 67 patients/hips was studied. Hips were either asymptomatic with no cam (Controls, n=18), symptomatic with cam (n=26) or asymptomatic with cam (n=23). CT-based quantitative assessments of femoral, acetabular, pelvic and spino-pelvic parameters were performed. Measurements were compared between controls and those with a cam deformity, as well as between the 3 groups. Morphological parameters that were independent predictors of a symptomatic Cam were determined using a regression analysis.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 51 - 51
1 Nov 2016
Lamontagne M Ng G Catelli D Beaulé P
Full Access

With the growing number of individuals with asymptomatic cam-type deformities, elevated alpha angles alone do not always explain clinical signs of femoroacetabular impingement (FAI). Differences in additional anatomical parameters may affect hip joint mechanics, altering the pathomechanical process resulting in symptomatic FAI. The purpose was to examine the association between anatomical hip joint parameters and kinematics and kinetics variables, during level walking.

Fifty participants (m = 46, f = 4; age = 34 ± 7 years; BMI = 26 ± 4 kg/m²) underwent CT imaging and were diagnosed as either: symptomatic (15), if they showed a cam deformity and clinical signs; asymptomatic (19), if they showed a cam deformity, but no clinical signs; or control (16), if they showed no cam deformity and no clinical signs. Each participant's CT data was measured for: axial and radial alpha angles, femoral head-neck offset, femoral neck-shaft angle, medial proximal femoral angle, femoral torsion, acetabular version, and centre-edge angle. Participants performed level walking trials, which were recorded using a ten-camera motion capture system (Vicon MX-13, Oxford, UK) and two force plates (Bertec FP4060–08, Columbus, OH, USA). Peak sagittal and frontal hip joint angles, range of motion, and moments were calculated using a custom programming script (MATLAB R2015b, Natick, MA, USA). A one-way, between groups ANOVA examined differences among kinematics and kinetics variables (α = 0.05), using statistics software (IBM SPSS v.23, Armonk, NY, USA); while a stepwise multiple regression analysis examined associations between anatomical parameters and kinematics and kinetics variables.

No significant differences in kinematics were observed between groups. The symptomatic group demonstrated lower peak hip abduction moments (0.12 ± 0.08 Nm/kg) than the control group (0.22 ± 0.10 Nm/kg, p = 0.01). Sagittal hip range of motion showed a moderate, negative correlation with radial alpha angle (r = −0.33, p = 0.02), while peak hip abduction moment correlated with femoral neck-shaft angle (r = 0.36, p = 0.009) and negatively with femoral torsion (r = −0.36, p = 0.009). With peak hip abduction moment in the stepwise regression analysis, femoral torsion accounted for a variance of 13.3% (F(1, 48) = 7.38; p = 0.009), while together with femoral neck-shaft angle accounted for a total variance of 20.4% (R² change = 0.07, F(2, 47) = 6.01; p = 0.047).

Although elevated radial alpha angles may have limited sagittal range of motion, the cam deformity parameters did not affect joint moments. Femoral neck-shaft angle and femoral torsion were significantly associated with peak hip abduction moment, suggesting that the insertion location of the abductor affects muscle's length and its resultant force vector. A varus neck angle, combined with severe femoral torsion, may ultimately influence muscle moment arms and hip mechanics in individuals with cam FAI.