Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 221 - 221
1 May 2009
Newell R Hubley-Kozey C Stanish W Deluzio K
Full Access

The knee adduction moment is indicative of the degree of medial compartmental loading at the knee joint and has been related to the presence and progression of knee osteoarthritis (OA). Studies have reported differences between OA and asymptomatic groups when measuring the adduction moment at the knee; however, there have been various biomechanical models used to describe this moment. In addition, non-invasive interventions have been shown to decrease the adduction moment but only at certain portions of the gait cycle. The objective of the study was to determine if changing the biomechanical model would affect the ability to detect differences between OA and asymptomatic gait and whether these differences depended on which portion of the gait cycle was analysed.

The gait of forty-four asymptomatic and forty-four moderate OA subjects was measured. The adduction moment was calculated using three different biomechanical models commonly used in the literature:

a 2D representation of the lower limb,

a 3D coordinate system based in the tibia, and

a 3D coordinate system based in both the tibia and femur. The adduction moment waveforms were compared between groups for various portions of the gait cycle for all three models.

The choice of biomechanical model changed the overall magnitude and shape of the adduction moment waveform. These changes affected the ability to detect group differences using commonly reported parameters of the adduction moment. However, group separation was achieved (regardless of model) when analyzing the overall magnitude of the adduction moment across stance phase and the mid-stance portion of the gait cycle.

These results demonstrate that the OA subjects are not unloading the medial compartment of the knee at full weight acceptance as well as the healthy controls. Furthermore, the OA subjects are experiencing a higher medial compartment load that is being sustained for the duration of the stance phase of the gait cycle. Group differences that are not model dependent may be important in understanding the pathomechanics of OA and evaluating interventions. These findings support the need for a better understanding of the anatomical mechanisms associated with the adduction moment.


The Journal of Bone & Joint Surgery British Volume
Vol. 58-B, Issue 4 | Pages 444 - 447
1 Nov 1976
Newell R Durbin F

It is suggested that there is a group of cases of congenital angulation of tubular bones in which the lesion is a defect of ossification of the primary cartilaginous anlage and in which neurofibromatosis is not implicated. It appears that in this group the prognosis with regard to the resolution of deformity and the prevention of pseudarthrosis with conservative treatment or relatively simple surgical procedures is better than that in the neurofibromatous type.