header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 133 - 133
11 Apr 2023
Namayeshi T Lee P
Full Access

Falls in adults are a major problem and can lead to injuries and death. In order to better understand falls and successful recoveries, identifying kinematics, kinetics, and muscle forces during recovery from loss of balance is crucial. To obtain reactive gait patterns, participants must be subjected to unexpected perturbations such as trips and slips. Previous researchers have reported kinetics recovery data following stumbling; however, the muscle force recovery patterns remain unknown. To better target exercises to reduce the risk of falls, we must first understand which muscles, their magnitude, and their coordination patterns, play a role in a successful recovery from a trip and a slip. Additionally, knowing the successful patterns of lower limb function can help with the diagnosis of faulty movements.

A total of 20 healthy adults in their twenties with similar athletic backgrounds were perturbed on a split-belt treadmill using Computer-Assisted Rehabilitation Environment (Motkforce Link) at a preset speed of 1.1m/s. Two kinds of perturbations were administered: slip and trip. Slips were simulated by accelerating one belt, whereas trips were simulated by decelerating one belt. Both perturbations had similar intensity and only differed in the direction. Computational modeling was used to obtain lower-limb function during the compensatory step. SPM paired t-test was used to compare differences in recovery strategies between slip and trip through magnitude and patterns of joints.

There were no significant differences in joint angles post tripping vs post-slipping. Results of net joint moments showed that compensating for the loss of balance due to tripping required a higher ankle plantarflexion moment than slipping (at 22-52%; 1.2± 0.3vs0.4±0.2, p<0.001). Additionally, larger gluteus maximus (at 40-50%;8.7±3.8vs2.7±1.1N/kg, p=0.001), gluteus medius (at23~33%; 22.6±5.7vs6.8±3.6N/kg, p<0.001) were generated than post-slipping, respectively.

These findings suggested that greater GMAX and GMED forces are required post-trip recovery than slip. Future analysis of trip recovery showed the importance of ankle joint in recovering from forward and backward fall. These results can be used as references in remote diagnosis of joint and muscle weakness and assessment of the risk of falls with the use of accelerometers.