Mechanical loosening of total hip replacement (THR) is primarily diagnosed using radiographs, which are diagnostically challenging and require review by experienced radiologists and orthopaedic surgeons. Automated tools that assist less-experienced clinicians and mitigate human error can reduce the risk of missed or delayed diagnosis. Thus the purposes of this study were to: 1) develop an automated tool to detect mechanical loosening of THR by training a deep convolutional neural network (CNN) using THR x-rays, and 2) visualize the CNN training process to interpret how it functions. A retrospective study was conducted using previously collected imaging data at a single institution with IRB approval. Twenty-three patients with cementless primary THR who underwent revision surgery due to mechanical loosening (either with a loose stem and/or a loose acetabular component) had their hip x-rays evaluated immediately prior to their revision surgery (32 “loose” x-rays). A comparison group was comprised of 23 patients who underwent primary cementless THR surgery with x-rays immediately after their primary surgery (31 “not loose” x-rays). Fig. 1 shows examples of “not loose” and “loose” THR x-ray. DenseNet201-CNN was utilized by swapping the top layer with a binary classifier using 90:10 split-validation [1]. Pre-trained CNN on ImageNet [2] and not pre-trained CNN (initial zero weights) were implemented to compare the results. Saliency maps were implemented to indicate the importance of each pixel of a given x-ray on the CNN's performance [3].INTRODUCTION
METHODS
Ceramic heads are used in hip revision surgery to mitigate corrosion concerns. Manufacturers recommend using a pristine titanium sleeve in conjunction with a well-fixed metal stem to prevent early failure of the ceramic head. However, the influence of impact force, head size, and sleeve offset on pull-off strength and seating displacement of a revision head assembly is not fully understood. Therefore, the purpose of this study was to investigate the pull-off strength and displacement of commercially available revision ceramic heads and titanium taper sleeve offsets (BIOLOX OPTION, CeramTec GmbH, Plochingen, Germany) while covering a range of clinically relevant impaction forces. Two head sizes (28 mm, n = 12 and 36 mm, n = 12) and two taper adapter sleeve offsets (small, n = 12 and extra-large, n =12) were tested in this study. A dynamic impaction rig was constructed to seat the head, sleeve, and stem assembly. Consistent impaction forces were achieved by a dropping a hammer fixed to a lever arm from a pre-determined height onto a standard impactor instrumented with a piezoelectric force sensor (PCB Piezotronics Inc.). Axially applied forces of 2 kN and 6 kN were used to cover a range of typical impaction forces. Three non-contact differential variable reluctance transducers (LORD Sensing Systems) were used to track the displacement of the head relative to the stem. Subsequently, samples were transferred a servo hydraulic testing machine, and a pull-off test was carried out per ISO 7206- 10 to measure the disassembly force.INTRODUCTION
METHODS
As an alternative to total hip arthroplasty (THA), hip resurfacing arthroplasty (HRA) provides the advantage of retaining bone stock. However, femoral component loosening and femoral neck fracture continue to be leading causes of revision in HRA. Surgical technique including cementation method and bone preparation, and patient selection are known to be important for fixation. This study was designed to understand if and to what extent compromise in bone quality and the presence of cysts in the proximal femur contribute to resurfacing component loosening. A finite element (FE) model of a proximal femur was used to calculate the stress in the cement layer. Bone density to Young's modulus relationship was used to calibrate the bone stiffness in the model using computed tomography. A contemporary resurfacing implant (BHR, Smith & Nephew) was used in the FE model. The effect of reduced bone quality (35% reduction relative to normal baseline; osteoporosis threshold) and presence of cysts on stress in the bone cement layer was then assessed using the same FE model. The center of the cyst (a localized spherical cavity 1 cm in diameter) was located directly under the contact patch. Simulations were run with two locations of the center of the cyst, on the surface of the resected bone and 1 cm below it. The surface cyst was filled with bone cement, but the inner cyst was empty. The contact force and location for the model were obtained from instrumented implant studies. Simulations were run representing the peak loads during two activities, jogging and stand-up from seated position. While density reduction of the bone reduced the stress in the CoCr femoral head, the Von-Mises stress in the cement layer was amplified. The peak Von-Mises stress in the cement layer under the contact patch increased more than six times for the jogging activity, and more than ten times for the stand-up activity, relative to values for normal bone density. The impact of cysts on the cement layer stress or the strain distributions in the bone were minimal. The results show a greater risk of failure of the cement layer under conditions of reduced bone density. In contrast cement stresses and bone strains appeared to be relatively immune to a surface cyst filled with bone cement or an empty inner cyst. Contraindications of hip resurfacing include severe osteopenia and multiple cysts of the femoral head, however no strict or quantitative criteria exist to guide patient selection. Research similar to the one presented herein, maybe key to developing better patient selection criteria to reduce risk associated with compromised femoral head fixation.
Posterior stabilized (PS) total knee arthroplasty (TKA), wherein mechanical engagement of the femoral cam and tibial post prevents abnormal anterior sliding of the knee, is a proven surgical technique. However, many patients complain about abnormal clicking sensation, and several reports of severe wear and catastrophic failure of the tibial post have been published. In addition to posterior cam-post engagement during flexion, anterior engagement with femoral intercondylar notch can also occur during extension. The goal of this study was to use dynamic simulations to explore sensitivity of tibial post loading to implant design and alignment, across different activities. LifeModeler KneeSIM software was used to calculate tibial post contact forces for four contemporary PS implants (Triathlon PS, Stryker; Journey BCS and Legion PS, Smith & Nephew; LPS Flex, Zimmer Biomet). An average model of the knee, including cartilage and soft tissue insertion locations, created from MRI data of 40 knees was used to mount and align the component. The Triathlon femoral component was mounted with posterior and distal condylar tangency at: a) both medial and lateral condylar cartilage (anatomic alignment), b) at the medial condylar cartilage and perpendicular to mechanical axis (mechanical alignment with medial tangency), and c) at lateral condylar cartilage and perpendicular to mechanical axis (mechanical alignment with lateral tangency). The influence of implant design was assessed via simulations for the other implant systems with the femoral components aligned perpendicular to mechanical axis with lateral tangency. Five different activities were simulated. The anterior contact force was significantly smaller than the posterior contact force, but it varied noticeably with tibial insert slope and implant design. For Triathlon PS, during most activities anatomic alignment of the femoral component resulted in greater anterior contact force compared to mechanical alignment, but absolute magnitude of forces remained small (<100N). Mechanical alignment with medial tangency resulted in greater posterior contact force for deep knee bend and greater anterior force for chair sit activity. For all implants, peak posterior contact forces were greater for activities with greater peak knee flexion. The magnitude of posterior contact forces for the various implants was comparable to other reports in literature. Overall activity type, implant design and slope had greater impact on post loading than alignment method. Tibial insert slope was shown to be important for anterior post loading, but not for posterior post loading. Anatomic alignment could increase post loading with contemporary TKA systems. In the case of the specific design for which effect of alignment was evaluated, the changes in force magnitude with alignment were modest (<200N). Nonetheless, results of this study highlight the importance of evaluating the effect of different alignment approaches on tibial post loading.
Postoperative functional limitations after Total Knee Arthroplasty (TKA) are caused, in part, by a mismatch between a patient's natural anatomy and conventional “off-the-shelf” implants. To address this, we propose a new concept combining off-the-shelf femur and tibia implants with custom polyethylene tibial inserts designed to account for a patient's unique anatomy. Our goal in this study was to use knee specific computational modeling to determine the neutral path of motion and laxity of an intact knee under axial compression and shear forces through full flexion and compare intact motion against the same knee implanted with a conventional off-the-shelf vs. a custom tibial insert. 3D models of a healthy knee joint were acquired from an open development repository funded by the National Institute of Biomedical Imagining and Bioengineering (Harris et al., 2016). The knee model was virtually implanted with conventional (off-the-shelf) posterior cruciate retaining (CR) components including the femoral component, tibial tray, and a conventional insert. A custom CR tibial insert was designed taking into account native articular geometry and compatibility with placement of the off-the-shelf femoral/tibial tray. Bone, cartilage and implant models were imported into ANSYS Workbench. Ligaments were calibrated using data from in-vitro experimental tests (Harris et al., 2016). The following load conditions were applied to the femur: 20 N axial compression (neutral path), 20 N axial compression with 80 N anterior shear force, and 20 N axial compression with 80 N posterior shear force. Simultaneously for each loading condition, the knee was flexed from 0 – 120 degrees. A circular axis system was used to describe the motion of the femur relative to the tibia.INTRODUCTION
METHODS
Aims
Patients and Methods
The primary purpose of the current study was to evaluate and compare the wear properties of vitamin E-doped, highly-crosslinked PE (VEPE) and one formulation of moderately cross-linked and mechanically-annealed ultra-high molecular weight PE (ModXLPE) in patients five years after primary THA. We also sought to understand whether polyethylene wear is associated with radiographic evidence of bone resorption or with deterioration in patient-reported outcome measures (PROMs). A total of 221 patients from four international centers were recruited into a prospective RSA and clinical outcomes study. Seventy percent (76%) of patients received VEPE (vs. ModXLPE) liners, and 36% received ceramic (vs. metal) femoral heads. PROMs and radiographs were collected preoperatively and at one, two, and five years postoperatively. In addition, RSA radiographs were collected to measure PE wear. We observed similar bedding in through the one-year interval and wear through the two-year interval between the two liner types. However, there was significantly more femoral head penetration in the ModXLPE cohort compared to the VEPE cohort at the five-year follow-up (p<0.001). The only variables independently predictive of increased wear were ModXLPE (vs VEPE) liner type (β=0.22, p=0.010) and metal (vs. ceramic) femoral head type (β=0.21, p=0.013). There was no association between increased wear and radiolucency development (p=0.866) or PROMs. No patients were found to have evidence of osteolysis. At five-years postoperatively, patients treated with VEPE (vs. ModXLPE) and ceramic (vs. metal) femoral heads demonstrated decreased wear. At the longest follow-up (five years postoperatively), the wear rates for both liner groups were very low and have not led to any osteolysis or implant failures via aseptic loosening.
Osteolysis secondary to ultra-high molecular weight polyethylene (UHMWPE) wear is a leading cause of late-term implant failure via aseptic loosening in patients treated with total hip arthroplasty (THA). Radiation crosslinking of UHMWPE has been shown to decrease wear. However, the resulting polymer (crosslinked-PE) has a high free radical content. Two different methods that have been used to reduce the remaining free radicals are mechanical annealing and chemical stabilization using Vitamin E, a free radical scavenger. The primary purpose of the current study was to evaluate and compare the wear properties of vitamin E-doped crosslinked-PE (VEPE) and one formulation of mechanically annealed crosslinked-PE using radiostereometric analysis (RSA) in patients five years after primary THA. We also sought to understand the association between polyethylene wear and patient-reported outcome measures (PROMs). Three-hundred and five patients from six international centers were enrolled. Seventy-six percent were treated with highly-crosslinked (95 kGy) VEPE liners, and the rest received moderately-crosslinked (50 kGy) (ModXL), mechanically annealed liners. Data was collected prospectively at one-, two-, and five-year intervals. At the 5-year follow-up, proximal femoral head penetration into the VEPE liners (median = 0.05mm (range, −0.03–1.20)) was significantly lower than the penetration into the ModXL liners (median = 0.15mm (range, −0.22–1.04)) (p<0.001). In the VEPE cohort the median proximal penetration did not increase from one- to five-year follow-up (p=0.209). In contrast, there was a significant increase in femoral head penetration for the ModXL group (p<0.001) during that same time. Multivariable regression showed that the only variable predictive of increased wear was ModXL liner type (B=0.12, p<0.001). There were no differences in PROMs between the liner groups, and there was no correlation between polyethylene wear and PROMs for the cohort as a whole. The current study is the largest analysis of polyethylene wear at five-year follow-up using the RSA technique. We observed similar bedding in through the two-year interval between the two liner types, however, there was significantly more wear in the ModXL cohort at five-years. Currently, the wear rates for both liner groups are below the osteolysis threshold and have not led to any implant failures via aseptic loosening. Continued follow-up will provide a better understanding of the association between wear rate and clinical outcomes.
The gold standard for PJI treatment comprises the use of antibiotic-loaded bone cement spacers, which are limited in their load bearing capacity[1]. Thus, developing an antibiotic-eluting UHMWPE bearing surface can improve the mechanical properties of spacers and improve the quality of life of PJI patients. In this study, we incorporated vancomycin into UHMWPE to investigate its elution characteristics, mechanical properties and its efficacy against an acute PJI in an animal model. Vancomycin hydrochloride was incorporated into UHMWPE (2 to 14%) by blending and consolidation. We studied drug elution with blocks in PBS and UV-Vis spectroscopy at 280 nm. We determined the tensile mechanical properties and impact strength [3]. We implanted osteochondral plugs in rabbits using either control UHMWPE, bone cement (40g) containing vancomycin (1g) and tobramycin (3.6g) or vancomycin-eluting UHMWPE (n=5) plugs in the patellofemoral groove of rabbits. All rabbits received a beaded titanium rod in the tibial canal. All groups received two doses of 5×107 cfu of bioluminescent Vancomycin elution increased with increasing drug loading. Vancomycin elution above MIC for 3 weeks and optimized mechanical properties were obtained at 6–7 wt% vancomycin loading in UHMWPE. In our lapine acute infection model using bioluminescent These results suggest that an antibiotic-eluting UHMWPE spacer with acceptable properties as a bearing surface could be used to treat periprosthetic joint infection in lieu of bone cement spacers and this could allow safer load bearing and a higher quality of life for the patients during treatment. In addition, this presents a safer alternative in cases where the second stage surgery for the implantation of new components is hindered.
Our first aim was to determine whether there are significant
changes in the level of metal ions in the blood at mid-term follow-up,
in patients with an Articular Surface Replacement (ASR) arthroplasty.
Secondly, we sought to identify risk factors for any increases. The study involved 435 patients who underwent unilateral, metal-on-metal
(MoM) hip resurfacing (HRA) or total hip arthroplasty (THA). These
patients all had one measurement of the level of metal ions in the
blood before seven years had passed post-operatively (early evaluation)
and one after seven years had passed post-operatively (mid-term evaluation).
Changes in ion levels were tested using a Wilcoxon signed-rank test.
We identified subgroups at the highest risk of increase using a
multivariable linear logistic regression model.Aims
Patients and Methods
Radiation cross-linked UHMWPE is preferred in total hip replacements due to its wear resistance [1]. In total knees, where stresses are higher, there is concern of fatigue damage [2]. Antioxidant stabilization of radiation cross-linked UHMWPE by blending vitamin E into the polymer powder was recently introduced [3]. Vitamin E greatly hinders radiation cross-linking in UHMWPE [4]. In contrast peroxide cross-linking of UHMWPE is less sensitive to vitamin E concentration [5]. In addition, exposing UHMWPE to around 300°C, increases its toughness by inducing controlled chain scission and enhanced intergranular diffusion of chains, simultaneously [6]. We present a chemically cross-linked UHMWPE with high vitamin E content and improved toughness by high temperature melting. Medical grade GUR1050 UHMWPE was blended with vitamin E and with 2,5-Di(tert-butylperoxy)-2,5-dimethyl-3-hexyne or P130 (0.5% Vitamin-E and 0.9% P130). The mixed powder was consolidated into pucks. The pucks were melted for 5 hours in nitrogen at 300, 310 and 320°C. One set of pucks melted at 310°C was accelerated aged at 70°C at 5 atm. oxygen for 2 weeks. Tensile mechanical properties were determined using ASTM D638. Izod impact toughness was determined using ASTM D256 and F648. Wear rate was determined using a bidirectional pin-on-disc (POD) tester with cylindrical pins of UHMWPE against polished CoCr discs in undiluted, preserved bovine serum.Introduction
Methods and Materials
One of the key factors responsible for altered kinematics and joint stability following contemporary total knee arthroplasty (TKA) is resection of the anterior cruciate ligament (ACL). Therefore, retaining the ACL is often considered to be the “holy grail” of TKA. However, ACL retention can present several technical challenges, and in some cases may not be viable due to an absent or non-functional ACL. Therefore, the goal of this research was to investigate whether substitution of ACL function through an anterior post mechanism could improve kinematic deficits of contemporary posterior cruciate ligament (PCL) retaining (CR) implants. This was done using KneeSIM, a previously established dynamic simulation tool based on an Oxford-rig setup. Deep knee bend, chair-sit, stair-ascent and walking were simulated for a contemporary ACL sacrificing (CR) implant, two ACL retaining implants, and an ACL substituting and PCL retaining implant. The motion of the femoral condyles relative to the tibia was recorded for kinematic comparisons. Our results revealed that, like ACL retaining implants, the ACL substituting implant could also provide kinematic improvements over contemporary ACL sacrificing implants by reducing early posterior femoral shift and preventing paradoxical anterior sliding. Such ACL substituting implants may be a valuable addition to the armament of joint surgeons, allowing them to provide improved knee function even when ACL retention is not feasible. Further research is required to investigate this mechanism in vitro and in vivo to verify the results of the simulations, and to determine whether kinematic improvements translate into improved clinical outcomes.
Radiation cross-linking of ultrahigh molecular weight polyethylene (UHMWPE) has reduced the in vivo wear and osteolysis associated with bearing surface wear (1), significantly reducing revisions associated with this complication (2). Currently, one of the major and most morbid complications of joint arthroplasty is peri-prosthetic infection (3). In this presentation, we will present the guiding principles in using the UHMWPE bearing surface as a delivery device for therapeutic agents and specifically antibiotics. We will also demonstrate efficacy in a clinically relevant intra-articular model. Medical grade UHMWPE was molded together with vancomycin at 2, 4, 6, 8, 10 and 14 wt%. Tensile mechanical testing and impact testing were performed to determine the effect of drug content on mechanical properties. Elution of the drug was performed in phosphate buffered saline (PBS) for up to 8 weeks and the detection of the drug in PBS was done by UV-Vis spectroscopy. A combination of vancomycin and rifampin in UHMWPE was developed to address chronic infection and layered construct containing 1 mm-thick drug-containing UHMWPE in the non-load bearing regions was developed for delivery. In a lapine (rabbit) intra-articular model (n=6 each), two plug of the layered UHMWPE construct were placed in the trochlear grove of the rabbit femoral surface and a porous titanium rod with a pre-grown biofilm of bioluminescent Introduction
Materials and Methods
The use of narcotic medications to manage postoperative pain after TJA has been associated with impaired mobility, diminished capacity to engage in rehabilitation, and lower patient satisfaction [1]. In addition, side effects including constipation, dizziness, nausea, vomiting and urinary retention can prolong post-operative hospital stays. Intraarticular administration of local anesthetics such as bupivacaine – part of a multimodal postoperative pain management regimen – reduces pain and lowers patients' length of stay [2]. In addition to its anesthetic activity, bupivacaine also has antibacterial activity, particularly against gram-positive bacteria [3]. We have developed a bupivacaine-eluting ultrahigh molecular weight polyethylene (Bupi-PE) formulation; we hypothesized that elution of bupivacaine from polyethylene could have both anesthetic and antibacterial effects Introduction
Methods
About 2% of primary total joint replacement arthroplasty (TJA) procedures become infected. Periprosthetic joint infection (PJI) is currently one of the main reasons requiring costly TJA revisions, posing a burden on patients, physicians and insurance companies.1 Currently used drug-eluting polymers such as bone cements offer limited drug release profiles, sometimes unable to completely clear out bacterial microorganisms within the joint space. For this study we determined the safety and efficacy of an antibiotic-eluting UHMWPE articular surface that delivered local antibiotics at optimal concentrations to treat PJI in a rabbit model. Skeletally mature adult male New Zealand White rabbits received either two non-antibiotic eluting UHMWPE (CONTROL, n=5) or vancomycin-eluting UHMWPE (TEST, n=5) (3 mm in diameter and 6 mm length) in the patellofemoral groove (Introduction
Materials and Methods
Oxidation of ultrahigh molecular weight polyethylene (UHMWPE) can lead to failure of implants used in total joints. Cyclic loading is postulated to be one mechanism of in vivo oxidation in UHMWPE components as one previous study has shown [1]. We developed an accelerated aging test that incorporated compressive cyclic loading that the UHMWPE components would be exposed to in vivo. Surgeons are moving towards larger femoral heads in hip arthroplasty and removing less bone in knee arthroplasty necessitating thinner UHMWPE components. We hypothesized that, in this accelerated aging test, thinner UHMWPE components would be more susceptible to oxidation caused by the cyclic loading due to higher stresses in the material. All samples tested in this study were Conventional PE: GUR1050 was machined into test specimens, vacuum packaged and gamma sterilized. Test samples were blocks 100 mm × 89 mm in cross-section with 3 different thicknesses: 1 mm, 3 mm, and 10 mm (n=3 each). Three cylinders were cored out of each test sample to serve as controls (Fig 1a) that were physically separated and thereby isolating the oxidation attributable to an applied compressive cyclic load. The controls were placed back into the holes from where they were cored during testing. Compressive loading was administered by a 12.5 mm diameter applicator affixed to a hydraulic test frame (Fig 1b), and all testing was done at 80°C in air. A sinusoidal compressive cyclic stress between 1 and 10 MPa was applied at 5 Hz for 7 days. Microtomed thin films from all samples were analyzed via Fourier Transform Infrared Spectroscopy (FTIR) to quantify oxidation [2] after testing. Oxidation was measured through the thickness of the sample at targeted points along the length from directly underneath the center of the load applicator to 10mm away (Fig 1a). Oxidation was also measured through the thickness of the cylindrical controls.Introduction
Materials and Methods
The fatigue strength of ultrahigh molecular weight polyethylene (UHMWPE) in total joint implants is crucial to its long term success in high demand applications, such as in the knee, and is typically determined by measuring the crack propagation resistance in razor-notched specimens under cyclic load [1]. This only tells part of the story: that is, how well the material resists crack propagation once a crack is present. A second, equally important component of fatigue strength is how well the material resists crack formation. Previous studies cyclically loaded a cantilevered post until failure [2], postulating that the post would break very quickly after crack initiation. Parran The following UHMWPE formulations were tested: (i) virgin, (ii) gamma sterilized in vacuum, (iii) 91 kGy gamma irradiated, and (iv) 91 kGy gamma irradiated and subsequently melted. GUR1020 and GUR1050 bar stock of varying irradiation doses were machined into compact tension specimens [4] with a notch depth of 17 mm and a blunt notch root radius of 0.25 mm, mimicking a geometry of a joint replacement component. Specimens were held in constant tension until failure; 3 to 5 different loads between 1 kN and 2.25 kN (n=3 samples per load per material) were tested. A video camera was focused on the face of the notch and took a picture every 10 seconds. The photos were reviewed to manually determine the crack initiation time (Fig 1). The time it took for the sample to completely fail – that is, shear into two separate pieces – was also recorded.Introduction
Materials and Methods
Corrosion of the femoral head-trunnion junction in modular hip components has become a concern as the corrosion products may lead to adverse local tissue reactions. A simple way to avoid trunnion corrosion is to manufacture the femoral head with a non-metallic material, such as ceramics that are widely. An alternative solution may lie in advanced polymers like polyaryletherketones (PAEKs). These thermoplastics have high mechanical strength necessary for use as femoral heads in hip arthroplasty, but they must be tested to ensure that they do not adversely affect the wear of the ultrahigh molecular weight polyethylene (UHMWPE) liner counterface. Pin-on-disc (POD) wear testing has been extensively used to evaluate the wear properties of UHMWPE prior to more extensive and costly analysis with joint simulators. We hypothesized that the wear of crosslinked UHMWPE would not be adversely affected in POD tests when articulated against an advanced thermoplastic counterface. 0.1 wt.% VitE blended UHMWPE stock was e-beam irradiated to 100, 125, 140, 160, and 175 kGy and machined into cylindrical pins for testing. An additional group of 100 kGy e-beam irradiated and melted UHMWPE (with no vitamin E) was also machined and tested. Three different counterface materials were tested: (1) Cobalt-chrome (CoCr) with a surface roughness (Ra) of <0.5 μm, (2) Biolox™ ceramic (CeramTec), and (3) Polyetheretherketone (PEEK), a member of the PAEK family (Fig 1). A bidirectional POD wear tester [1] was used to measure the wear rate of UHMWPE specimens, where the specimens moved in a 10 mm × 5 mm rectangular pattern under a Paul-type load curve [2] synchronized with the motion. The peak load of the loading curve corresponded to a peak contact pressure of 5.1 MPa between each UHMWPE pin specimen and the counterface disc. Each test was conducted at 2 Hz in undiluted bovine serum stabilized with ethylenediamine tetraacetate (EDTA) and penicillin. The pins were cleaned and weighed daily, and a wear rate was calculated at the end of each test by linear regression.Introduction
Methods
Dual-mobility (DM) liners provide increased range of motion and stability. However, large head diameters have been associated with anterior hip pain due to impingement with surrounding soft-tissues, particularly the iliopsoas. Further, during hip extension the liner can get trapped due to anterior soft-tissue impingement that resists rotation being imparted to the liner from posterior stem-liner contact. Over time this can cause liner rim damage, leading to intra-prosthetic dislocation of the small diameter inner head. To address this, an anatomically contoured dual mobility (ACDM) liner was designed to reduce the volume of the liner below the equator that can interact with soft-tissues The average uniaxial stiffness (350 N/mm), and average dimensions (width × thickness = 14mm × 4mm) of 10 cadaver psoas tendon samples were determined in a separate study. The iliopsoas tendon was modelled as a Yeoh hyper-elastic material, and the material constants were tuned to match the experimental uniaxial test data. Cadaver specific FEA models were created for 5 specimens (10 hips) using computed tomography (CT) scans. The implant components were modeled as being rigid relative to the iliopsoas tendon. The iliopsoas tendon was modelled as extending from its insertion point on the lesser trochanter to the psoas notch on the pelvis for hip flexion angles of −15°, 0°, 15° and 30°. Appropriately sized DM components were implanted virtually for each specimen. Once placed in its proper position, the liner was rotated about the flexion axis until it contacted the stem posteriorly to represent its orientation during hip extension (Introduction
Methods
We have previously demonstrated that peroxide crosslinked vitamin E-blended UHMWPE maintains its clinically-required wear and mechanical properties [1]. This material can potentially be used as an irradiation-free bearing surface for TJA. However, using organic peroxides in medical devices requires a thorough examination of tissues in contact with the implant. For this study we crosslinked polyethylene using five times the needed concentration of peroxide (2,5-Dimethyl-2,5-di(t-butylperoxy)-hexyne-3 or P130), followed by implantation to determine implant biocompatibility, and pre and post implant peroxide residual contents. The study was performed after institutional approval following ISO standard 10993–6. Study groups: not crosslinked (0.2 (1050) VE), crosslinked (0.2 VE (1050)/5% P130) and crosslinked-high temperature melted (HTM) (0.2 VE (1050)/5% P130). Materials were blended and consolidated, machined (2.5 diameter × 2.5 cm height), sterilized and implanted in the dorsum New Zealand white rabbits. Pre and post implantation FTIR was performed. Two samples were implanted in each rabbit; Introduction
Methods