Crosslinking has been already used for about 80 years to enhance the longevity of polyethylene cables. The polymer alteration has been achieved with peroxide, silane or irradiation. The medical devices industry discovered the benefit of this technology for its tribological applications like hip or knee bearings in the 2000s as crosslinking improves considerably the abrasion resistance of the material. The more current methods used are Gamma and Beta irradiation. On the basis of economical (rising prices of Cobalt), environmental (the radioactive source can not be turned off), technological (low dose rate) drawbacks for Gamma respectively low penetration for Beta irradiation we decided to investigate an alternative technology: the X-Ray irradiation, which provides a homogeneous crosslinking in a relatively short time. We analyzed the wear, mechanical, thermal, oxidative and network properties of two vitamin E doped UHMWPE: first crosslinked with E-Beam, second with X-Ray. There wasn't any significant difference between the X-Ray and the E-Beam crosslinked material.
Highly cross linked polyethylenes (HXPE) have to be treated thermally after irradiation to eliminate residual free radicals. By adding vitamin E in the polyethylene powder a post-irradiation thermal treatment is not necessary. In this review the correlation between the intrinsic properties and the long-term stability of Vitelene® as a high performance material for artificial hip articulation will be displayed. Three different types of polyethylene (UHMWPE; GUR1020) were analyzed to compare mechanical properties as well as oxidative stability: PESTD (γ, 30 kGy, N2), HXPEREM (γ, 75 kGy, remelted, EO), Vitelene® (β, 80 kGy, 0.1% Vitamin E, EO). Artificial aging (ASTM F2003 − 70 °C, O2 at 5 bar) was used to simulate environmental damage. To evaluate the oxidation stability the Oxidation-Induction-Time (OIT) was measured by Differential Scanning Calorimetry (DSC - ASTM D3895) and the Oxidation Index (OI) was determined by Fourier-Transformation-Infrared-Spectroscopy (FTIR - ASTM F2102). The mechanical properties were analyzed by tensile- and impact investigations (ASTM D638 and ISO 11542-2) as well as by Small Punch Testing (SPT - ASTM F2183). The amount of wear was measured gravimetrically (ISO 14242-2).INTRODUCTION
MATERIALS & METHODS