Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 56 - 56
1 May 2016
Moshirabadi A
Full Access

Background

Performing total knee replacement needs both bony & soft tissue consideration. Late John Insall advocating spacer blocks with concept of balanced & equal flexion – extension Gap. Although we usually excise both ACL & PCL, still it is possible to retain more soft tissue. Both PCL retaining & sacrificing Require intact collaterals for stability. Superficial MCL & LCL should be preserved, if possible. After PCL removal the following advantages could obtain: More correction of fixed varus or valgus deformity, More surgical exposure. but there are no proved disadvantages like; increasing in stress & loosening of bone-cement-prosthesis interface, specific clinical difference in ROM, forward lean during stepping up, proprioception inferiority. In other hand over tight PCL cause excessive rollback of tibia & knee hinges open, preventing flexion (booking), and Severe posteromedial poly wear in poor balance PCL might be happened. Mid range laxity when Post. Capsule is tight, even with correct tensioning in full extension & 90 degree flexion, may occur (and secondary collateral ligaments imbalance throughout ROM). There is a major effect of capsular contracture in coronal mal alignment with flexion contracture. Full MCL releases not only correct fixed varus but also open the medial space in flexion. MCL & post. Capsule has combined valgus resistant effect in extension. PCL release increase flexion gap more, May be necessary to release something that affect extension gap as compensated balancing (Post.medial capsule). Any flexion contracture need to posterior capsulotomy & post. Condyle osteophyte removal before femoral recut. So it is possible to perform posteromedial capsulotomy prior to superficial MCL release.

Method

From May 2009 to June 2013, 219 TKA (165 patient) (bilateral in 54 patients, simultaneous bilateral in 5 patients) with primary DJD and varus deformity of knees were operated by myself with joint replacement. Most patients had some degree of varus correction in flexion, passively. The varus angle was less than 25*, means mild to severe but not decompensate. 46 patients had some degree of patella baja. For soft tissue balancing during Total knee arthroplasty I consider the following steps; Medial capsule & deep MCL release, PCL release, Posteromedial capsulotomy, semimembranous release, Superficial MCL release, Pes anserinous release. Post.medial capsulotomy was done in all cases. The Average Age was 65.47 years, 131 patients (177 knees) were female (79.3%) and five of them had bilateral TKA simultaneously. Lt Knee was operated in 94 cases (42.9% of 219). Spinal anesthesia was applied in 54.3% (119 patients) & epidural anesthesisa in 5 % (13 cases). 14 knees were operated with MIS technique and 205 knees with Standard medial parapatellar incision. Semi membranous release was necessary in 72 knees (33 pure=15%, without S.MCL release). S.MCL release was mandatory in 39 (17.8 %) knees for checking balanced medial and lateral subtle laxity (playing), I have used simple blade with 1 & 2 mm thickness in each ends for younger patients, and the other one with 3&4 mm thickness in elder cases.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 154 - 154
1 Jun 2012
Moshirabadi A
Full Access

Background

Performing total knee replacement needs both bony & soft tissue consideration. Late John Insall advocating spacer blocks with concept of balanced & equal flexion – extension Gap. Although we usually excise both ACL & PCL, still it is possible to retain more soft tissue. Both PCL retaining & sacrificing Require intact collaterals for stability. Superficial MCL & LCL should be preserved, if possible. after PCL removal the following advantages could obtain: More correction of fixed varus or valgus deformity, More surgical exposure. but there are no proved disadvantages like; increasing in stress & loosening of bone-cement-prosthesis interface, specific clinical difference in ROM, forward lean during stepping up, proprioception inferiority. in other hand Over tight PCL cause excessive rollback of tibia & knee hinges open, preventing flexion (booking), and Severe posteromedial poly wear in poor balance PCL might be happened.

Mid range laxity when Post. Capsule is tight, even with correct tensioning in full extension & 90 degree flexion, may occur (and secondary collateral ligaments imbalance throughout ROM). There is a major effect of capsular contracture in coronal mal alignment with flexion contracture. Full MCL releases not only correct fixed varus but also open the medial space in flexion. MCL & post. Capsule has combined valgus resistant effect in extension. PCL release increase flexion gap more, May be necessary to release something that affect extension gap as compensated balancing (Post.medial capsule). Any flexion contracture need to posterior capsulotomy & post. Condyle osteophyte removal before femoral recut.

So it is possible to perform posteromedial capsulotomy prior to superficial MCL release.

Method

From May to Dec. 2009, 22 patients (23 knees) with primary DJD and varus deformity of knees were operated by myself with joint replacement. most patients had some degree of varus correction in flexion, passively. the varus angle was less than 25∗, means mild to severe but not decompensated. For soft tissue balancing during Total knee arthroplasty I consider the following steps;

Medial capsule & deep MCL release, PCL release, Posteromedial capsulotomy, semimembranous release, Superficial MCL release, Pes anserinous release. Post. medial capsulotomy was done in all cases.

The Average Age was 64.74 years, 19 patients were female (83%) and one of them had bilateral TKA simultaneously. Lt Knee was operated in 14 cases (70% of 24). Spinal anesthesia was applied in 82%. 10 patients were operated with MIS technique and 13 patients with Standard medial parapatellar incision. Semi membranous release was necessary in 4 cases (preop varus 17,20,24,25∗). MCL release was mandatory in 2 cases (preop varus 17, 24 ∗ & No Flexibility in 30∗ flexion).for checking balanced medial and lateral subtle laxity (playing), I have used simple blade with 1 & 2 mm thickness in each ends for younger patients, and the other one with 3&4 mm thickness in elder cases.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 155 - 155
1 Jun 2012
Moshirabadi A
Full Access

Background

There are many difficulties during performing total hip replacement in high riding DDH. These difficulties include:

In Acetabular part: bony defect in antero lateral acetabular wall/finding true centre of rotation/shallowness of true acetabulum/hypertrophied and thick capsular obstacle between true and false acetabulum

In Femoral part: small diameter femoral shaft/excessive ante version/posterior placement of greater trochanter

anatomic changes in soft tissue & neurovascular around the hip including: adductor muscle contracture/shortening of abductor muscles/risk of sciatic nerve injury following lengthening of the limb after reduction in true acetabulum/vascular injury

The purpose of this lecture is how to manage above problems with using reinforcement ring (ARR) for reconstruction of true acetabulum and step cut L fashion proximal femoral neck shortening osteotomy in a single stage operation

Method

23 surgeries in 19 patients, including 18 female and one male were performed by me from Jan. 1997 till Dec. 2009. Six patients had bilateral hip dislocation, but till now only four of them had bilateral stepped operation. Left hip was involved in 15 cases (65.2%). The average age was 40 years old. All hips were high riding DDH according to both hartofillokides and crowe classification. Reconstruction of true acetabulum was performed with aid of reinforcement ring and bone graft from femoral head in all cases. Trochantric osteotomy was done in all, followed by fixation with wire in 22 cases which needed two revisions due to symptomatic non union (9%). Hooked plate was use in one case for trochantric fixation. Due to high riding femur, it was necessary to performed femoral shortening in neck area as a step cut L fashion.

In two patient, one with bilateral involvement, after excessive limb lengthening following trial reduction, it was necessary to performed concomitant supracondylar femoral shortening. (3 cases = 13%)

22 mm cup & miniature muller DDH stem were used in 18 cases (78.26%). In 5 cases, one bilaterally, non cemented stem and 28 mm cemented cup in ring were used.

Primary adductor tenotomy was performed in 9 cases. Secondary adductor tenotomy needed in 2 cases (totally = 47.82%). Repair of iatrogenic femoral artery tear after traction injury with retractor, occurred in 2 cases (8.69%).

All patients evaluate retrospectively. Average follow up month is 68.7.