Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 83 - 83
23 Feb 2023
Rossignol SL Boekel P Grant A Doma K Morse L
Full Access

Currently, the consensus regarding subscapularis tendon repair during a reverse total shoulder arthroplasty (rTSA) is to do so if it is possible. Repair is thought to decrease the risk of dislocation and improve internal rotation but may also increase stiffness and improvement in internal rotation may be of subclinical benefit. Aim is to retrospectively evaluate the outcomes of rTSA, with or without a subscapularis tendon repair.

We completed a retrospective review of 51 participants (25 without and 26 with subscapularis repair) who received rTSR by a single-surgeon using a single-implant. Three patient reported outcome measures (PROM) were assessed pre-operatively and post-operative at twelve months, as well as range of movement (ROM) and plain radiographs. Statistical analysis utilized unpaired t tests for parametric variables and Mann-Whitney U test for nonparametric variables.

External Rotation ROM pre-operatively was the only variable with a significance difference (p=0.02) with the subscapularis tendon repaired group having a greater range. Pre- and post-operative abduction (p=0.72 & 0.58), forward flexion (p=0.67 & 0.34), ASES (p=0.0.06 & 0.78), Oxford (p=0.0.27 & 0.73) and post-operative external rotation (p=0.17)

Greater external rotation ROM pre-operatively may be indicative of the ability to repair the subscapularis tendon intra-operatively. However, repair does not seem to improve clinical outcome at 12 months.

There was no difference of the PROMs and AROMs between the subscapularis repaired and not repaired groups for any of the variables at the pre-operative or 12 month post operative with the exception of the external rotation ROM pre-operatively. We can conclude that from PROM or AROM perspective there is no difference if the tendon is repaired or not in a rTSR and indeed the patients without the repair may have improved outcomes at 12 months.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 84 - 84
23 Feb 2023
Rossingol SL Boekel P Grant A Doma K Morse L
Full Access

The reverse total shoulder replacement (rTSR) has excellent clinical outcomes and prosthesis longevity, and thus, the indications have expanded to a younger age group. The use of a stemless humeral implant has been established in the anatomic TSR; and it is postulated to be safe to use in rTSR, whilst saving humeral bone stock for younger patients. The Lima stemless rTSR is a relatively new implant, with only one paper published on its outcomes.

This is a single-surgeon retrospective matched case control study to assess short term outcomes of primary stemless Lima SMR rTSR with 3D planning and Image Derived Instrumentation (IDI), in comparison to a matched case group with a primary stemmed Lima SMR rTSR with 3D planning and IDI.

Outcomes assessed: ROM, satisfaction score, PROMs, pain scores; and plain radiographs for loosening, loss of position, notching. Complications will be collated. Patients with at least 1 year of follow-up will be assessed.

With comparing the early radiographic and clinical outcomes of the stemless rTSR to a similar patient the standard rTSR, we can assess emerging trends or complications of this new device.

41 pairs of stemless and standard rTSRs have been matched, with 1- and 2-year follow up data. Data is currently being collated. Our hypothesis is that there is no clinical or radiographical difference between the Lima stemless rTSR and the traditional Lima stemmed rTSR.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 82 - 82
23 Feb 2023
Rossignol SL Boekel P Rikard-Bell M Grant A Brandon B Doma K O'Callaghan W Wilkinson M Morse L
Full Access

Glenoid baseplate positioning for reverse total shoulder replacements (rTSR) is key for stability and longevity. 3D planning and image-derived instrumentation (IDI) are techniques for improving implant placement accuracy. This is a single-blinded randomised controlled trial comparing 3D planning with IDI jigs versus 3D planning with conventional instrumentation.

Eligible patients were enrolled and had 3D pre-operative planning. They were randomised to either IDI or conventional instrumentation; then underwent their rTSR. 6 weeks post operatively, a CT scan was performed and blinded assessors measured the accuracy of glenoid baseplate position relative to the pre-operative plan.

47 patients were included: 24 with IDI and 23 with conventional instrumentation. The IDI group were more likely to have a guidewire placement within 2mm of the preoperative plan in the superior/inferior plane when compared to the conventional group (p=0.01). The IDI group had a smaller degree of error when the native glenoid retroversion was >10° (p=0.047) when compared to the conventional group. All other parameters (inclination, anterior/posterior plane, glenoids with retroversion <10°) showed no significant difference between the two groups.

Both IDI and conventional methods for rTSA placement are very accurate. However, IDI is more accurate for complex glenoid morphology and placement in the superior-inferior plane. Clinically, these two parameters are important and may prevent long term complications of scapular notching or glenoid baseplate loosening.

Image-derived instrumentation (IDI) is significantly more accurate in glenoid component placement in the superior/inferior plane compared to conventional instrumentation when using 3D pre-operative planning. Additionally, in complex glenoid morphologies where the native retroversion is >10°, IDI has improved accuracy in glenoid placement compared to conventional instrumentation. IDI is an accurate method for glenoid guidewire and component placement in rTSA.