header advert
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_4 | Pages 36 - 36
1 Jan 2013
Ohwada T Yamashita T Miwa T Sakaura H
Full Access

Introduction

Recently various type of spinal instrumentation was applied, and they are essential in modern spinal fusion surgery. Whereas several authors reported increased possibility of complication and degeneration on adjacent segment. We tried PLIF without instrumentation with box type intervertebral cages.

Method

Forty-one cases of degenerative lumbar diseases were treated by PLIF with carbon cages without spinal instrumentation. There were 17 males and 24 females, and age averaged 71.4 years. Thirty-two cases were degenerative spondylolisthesis, five were spinal stenosis, and four were disc herniation. Single PLIF was performed on forty cases, and double segment in one, with additional decompression on other segment in twenty. Bilateral facet joint were preserved to avoid lateral instability. Two pieces of cage were inserted with local bone graft. Post-op. follow-up period were 12 to 24 months, 15 months on average.


The Journal of Bone & Joint Surgery British Volume
Vol. 91-B, Issue 11 | Pages 1541 - 1544
1 Nov 2009
Hosono N Miwa T Mukai Y Takenaka S Makino T Fuji T

Using the transverse processes of fresh porcine lumbar spines as an experimental model we evaluated the heat generated by a rotating burr of a high-speed drill in cutting the bone. The temperature at the drilled site reached 174°C with a diamond burr and 77°C with a steel burr. With water irrigation at a flow rate of 540 ml/hr an effective reduction in the temperature was achieved whereas irrigation with water at 180 ml/hr was much less effective. There was a significant negative correlation between the thickness of the residual bone and the temperature measured at its undersurface adjacent to the drilling site (p < 0.001).

Our data suggest that tissues neighbouring the drilled bone, especially nerve roots, can be damaged by the heat generated from the tip of a high-speed drill. Nerve-root palsy, one of the most common complications of cervical spinal surgery, may be caused by thermal damage to nerve roots arising in this manner.