Introduction
To develop an international guideline (AOGO) about use of osteobiologics in Anterior Cervical Discectomy and Fusion (ACDF) for treating degenerative spine conditions.
Method
The guideline development process was guided by AO Spine Knowledge Forum Degenerative (KF Degen) and followed the Guideline International Network McMaster Guideline Development Checklist. The process involved 73 participants with expertise in degenerative spine diseases and surgery from 22 countries. Fifteen systematic reviews were conducted addressing respective key topics and evidence were collected. The methodologist compiled the evidence into GRADE Evidence-to-Decision frameworks. Guideline panel members judged the outcomes and other criteria and made the final recommendations through consensus.
Cervical and lumbar spine fusion procedures are increasing every year. Nonetheless, these procedures are associated with high infection rates, resulting in additional cost burden. The conundrum of achieving efficient spinal fusions with minimum complications requires an ideal bone graft with osteoconductive, osteoinductive, osteogenic and structural characteristics. Synthetic bone graft substitutes with or without autograft, allograft or synthetic bone substitutes have been commonly used for fusion procedures. We carried out a meta-analysis of comparative studies and prospective case series (n = 29) with cervical and lumbar fusion procedures using synthetic bone graft substitutes, autograft or allograft and other biologics. Synthetic bone graft substitutes analysed included HA (Hydroxyapatite), β-TPC (Tri Calcium Phosphate), β-TSC (Tri Calcium Sulfate), PMMA (Polymethylmetacrylate), Surgibone, BOP (Biocompatible Osteoconductive Polymer). The analysis revealed suboptimal evidence for the efficacy and safety of synthetic products used in spinal fusion procedures. Further studies are needed to determine beneficial effects of synthetic substitutes. However, the infection rate could be highly decreased with surface and composition modification of widely used polyether ether ketone (PEEK) implants. Laser modification of surface characteristics and collagen fleeces with micro and nano pore structures can prove to be excellent surface for increased osteoblasts cell proliferation and vitality.
Introduction
The objective of this study was to investigate the effects of different doses rhBMP-2 on bone healing in an ovine lumbar interbody fusion model.
Methods
In this study 22 sheep underwent two level lumbar interbody fusion using a ventrolateral approach with secondary dorsal fixation at L1/2 and L3/4. After randomization in one level a PEEK-cage was implanted filled with one of three doses rhBMP-2 (0,5mg; 1mg; 2mg) delivered on an ACS. The other level received an empty PEEK-cage or ACS filled cage. Animals were sacrificed after 3 and 6 months and decalcified histology was performed. This included histomorphological analysis as well as histomorphometry of the tissues within the cage.