We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.Objectives
Materials and Methods
The dGEMRIC index correlates more strongly with the pattern of radiographic joint space narrowing in hip osteoarthritis at five year follow-up than morphological measurements of the proximal femur. It therefore offers potential to refine predictive models of hip osteoarthritis progression. Longitudinal general population studies have shown that femoroacetabular impingement increases the risk of developing hip osteoarthritis, however, morphological parameters have a low positive predictive value. Arthroscopic debridement of impingement lesions has been proposed as a potential strategy for the prevention of osteoarthritis, however, the development of such strategies requires the identification of individuals at high risk of disease progression. We investigated whether delayed Gadolinium-Enhanced MRI of Cartilage (dGEMRIC) predicts disease progression. This imaging modality is an indirect measure of cartilage glycosaminoglycan content.Summary
Introduction
Cauda equina syndrome represents the constellation of symptoms and signs resulting from compression of lumbosacral nerve routes. Combined with subjective neurological findings, a reduction in anal tone is an important sign deeming further imaging necessary. Our main objective was to investigate the validity of DRE for assessment of anal tone. 75 doctors completed a questionnaire documenting their grade, speciality and experience in performing DRE. A model anus, using a pressure transducer surrounding an artificial canal, was assembled and calibrated. Participants performed 4 DREs on the model and predicted tone as ‘reduced’ or ‘normal’ (35 and 60 mmHg respectively), followed by a ‘squeeze’ test. 30 healthcare assistants (HCAs) with no training in DRE partook as a control group.Introduction
Method
Platelet Rich Plasma (PRP) has been shown to have positive effect in tendon regeneration in in-vitro and limited in-vivo animal studies. We aim to study PRP use in acute Achilles tendon rupture (ATR) regeneration in a purposely designed clinical trial. This is a prospective double-arm patient-blinded randomized controlled trial. ATR patients were randomized into PRP treatment or control groups. Non-operatively treated patients received PRP or control injection in clinic. In operatively treated patients, PRP gel was applied in the ruptured gap during percutaneous repair. Standard rehabilitation protocol was used and patients were followed up for 24 weeks. ATR, VISA-A and FAOS scores were used as subjective outcome measures. Functional ultrasound Elastography (FUSE) was performed at each follow-up to assess the mechanical properties of tendons. PRP analysis and tendon needle-biopsy were performed to study the histological differences during healing in both groups.Purpose
Methods
Anteromedial osteoarthritis of the knee (anteromedial gonarthrosis-AMG) is a common form of knee arthritis. In a clinical setting, knee arthritis has always been assessed by plain radiography in conjunction with pain and function assessments. Whilst this is useful for surgical decision making in bone on bone arthritis, plain radiography gives no insight to the earlier stages of disease. In a recent study 82% of patients with painful arthritis had only partial thickness joint space loss on plain radiography. These patients are managed with various surgical treatments; injection, arthroscopy, osteotomy and arthroplasty with varying results. We believe these varying results are in part due to these patients being at different stages of disease, which will respond differently to different treatments. However radiography cannot delineate these stages. We describe the Magnetic Resonance Imaging (MRI) findings of this partial thickness AMG as a way of understanding these earlier stages of the disease. 46 subjects with symptomatic partial thickness AMG underwent MRI assessment with dedicated 3 Tesla sequences. All joint compartments were scored for both partial and full thickness cartilage lesions, osteophytes and bone marrow lesions (BML). Both menisci were assessed for extrusion and tear. Anterior cruciate ligament (ACL) integrity was also assessed. Osteophytes were graded on a four point scale in the intercondylar notch and the lateral margins of the joint compartments. Scoring was performed by a consultant radiologist and clinical research fellow using a validated MRI atlas with consensus reached for disagreements. The results were tabulated and relationships of the interval data assessed with linear by linear Chi2 test and Pearson's Correlation.Introduction
Method
Functional ultrasound Elastography (FUSE) of Tendo Achilles is an ultrasound technique utilising controlled, measurable movement of the foot to non-invasively evaluate TA elastic and load-deformation properties. The study purpose is to assess Achilles tendons, paratenon and bursa mechanical properties in healthy volunteers and establish an outcome tool for TA treatment. Forty asymptomatic Achilles tendons of 20 healthy volunteers were recruited (10 men and 10 women, age range 18-55). One patient with Acute Achilles rupture scanned to evaluate the tendon gap. Each volunteer answered the Foot and Ankle Outcome Score (FAOS) and Victorian Institute Sport Assessment score (VISA-A) questionnaires. The Achilles Tendons were divided into three thirds (total 120 Proximal, middle and distal thirds). Three longitudinal images of each third were obtained using portable US scan device (Z.one, Zonare Medical System Inc., USA, 8.5 MHz). Images processing was achieved using a MatLAb software (developed by the research team) in parallel Oxford university computers. Each 1/3rd Achilles tendon under went the following scans:
Free hand US scan Free hand Compression decompression Elastography scan Dorsal Flexion elastography Planter flexion elastography Zonare real-time Elastography Elastography scan with the Oxford isometric dynamic foot and Ankle mover (OIDFA) B mode and elasticity images were derived from the raw ultrasound radio frequency data. The anatomical structures mechanical properties were evaluated by a quantitative score of different colours representing stiff tissue (blue) to more soft tissue (green, yellow, red).Purpose
Methods
Posterior fixation of intervertebral discs is used to treat, and occasionally diagnose, discogenic pain since it is thought that it will reduce the internal loading of the discs in vitro. We measured the internal loading of ten intervertebral discs using stress profilometry under simulated physiological loads and then after posterior fixation. Partial discectomies were performed to simulate advanced disc degeneration and the sequence repeated. Posterior fixation had very little effect on the magnitude of the loads acting on the disc and none when disc degeneration was simulated. It did, however, reduce bulging of the anterior annulus under combined bending and compression (p <
0.03). Recent experiments in vivo have shown that discogenic pain is associated with abnormal bulging of the annulus which suggests that the clinical benefit of fixation may be due to this.
We investigated the distribution of compressive ‘stress’ within cadaver intervertebral discs, using a pressure transducer mounted in a 1.3 mm diameter needle. The needle was pulled along the midsagittal diameter of a lumbar disc with the face of the transducer either vertical or horizontal while the disc was subjected to a constant compressive force. The resulting ‘stress profiles’ were analysed in order to characterise the distribution of vertical and horizontal compressive stress within each disc. A total of 87 discs from subjects aged between 16 and 87 years was examined. Our results showed that age-related degenerative changes reduced the diameter of the central hydrostatic region of each disc (the ‘functional nucleus’) by approximately 50%, and the pressure within this region fell by 30%. The width of the functional annulus increased by 80% and the height of compressive ‘stress peaks’ within it by 160%. The effects of age and degeneration were greater at L4/L5 than at L2/L3, and the posterior annulus was affected more than the anterior. Age and degeneration were themselves closely related, but the stage of degeneration had the greater effect on stress distributions. We suggest that structural changes within the annulus and endplate lead to a transfer of load from the nucleus to the posterior annulus. High ‘stress’ concentrations within the annulus may cause pain, and lead to further disruption.