The increased demand for total hip arthroplasty (THA) is having a significant impact on healthcare resources, resulting in increased interest in outpatient care pathways to reduce resource consumption. This study compared costs between patients who underwent outpatient THA using a Direct Anterior (DA) approach compared to a Direct Lateral (DL) approach to understand the effect of surgical approach on resource use. We conducted a prospective randomized controlled trial for DA patients undergoing primary THA. We compared patients in the outpatient arm of the trial to a prospective cohort of outpatient DL approach THAs. We recorded all costs including: equipment, length of stay in hospital, and laboratory or other medical tests. Following discharge, participants also completed a self-reported cost diary recording resource utilization such as emergency department visits or subsequent hospitalizations, tests and procedures, consultations or follow-up, healthcare professional services, rehabilitation, use of pain medications, informal care, productivity losses and out of pocket expenditures. We report costs from both Canadian public health care payer (HCP) and a societal perspective. The HCP perspective includes any direct health costs covered by the publicly funded system. In addition to the health care system costs, the societal perspective also includes additional costs to the patient (e.g. physiotherapy, medication, or assistive devices), as well as any indirect costs such as time off paid employment for patients or caregivers. We included 127 patients in the DA group (66.6 years old) and 51 patients in the DL group (59.4 years old) (p<0.01). There were no statistically significant differences in costs between groups from both the healthcare payer (DA= 7910.19, DL= 7847.17, p=0.80) and societal perspectives (DA= 14657.21, DL= 14581.21, p=0.96) In patients undergoing a successful outpatient hip replacement, surgical approach does not have an effect on cost from in hospital or societal perspectives.
For over a decade, modular titanium fluted tapered (TFT) stems have demonstrated excellent clinical success for femoral revision total hip arthroplasty (THA) surgery. The aim of this study was to report the short-term outcomes of a novel modern monoblock TFT stem used for revision and complex primary THA with a minimum of 2 years follow-up. We identified 126 patients who received a single monoblock TFT stem - 26 patients for complex THA (failed fracture fixation) and 100 patients for revision THA. The reasons for revision THA included 40 for previous prosthetic joint infection (PJI), 42 for aseptic loosening, 9 for trunnionosis, 9 for periprosthetic fractures. The Paprosky grading for femoral bone loss at the time of surgery and the measured subsidence of femoral stems at 3 months follow-up were determined. We evaluated the number and indications for re-operations. The mean time from surgery was 3.9 years (range 2.0 to 6.9 years). A paired t-test analysis showed significant improvement from pre-operative versus post-operative clinical outcome scores (p<0.001) for HHS (38.76 +/- 15.24vs. 83.42 +/- 15.38), WOMAC (45.6 ± 19.0 vs. 69.9 ± 21.3) and SF-12 Physical component (31.7 ± 8.1 vs. 37.8 ± 11.3) and SF-12 Mental component (48.2 ± 12.2 vs. 51.6 ± 12.5). The Paprosky grading for femoral bone loss was Grade 1 (3.9%), Grade 2 (35.7%), Grade 3A (47.6%), Grade 3B (11.1%) and Grade 4 (1.6%) cases. There were 18 re-operations (14.7%) with 13 for PJI (7 treated with implant retention, 6 treated with a two-staged revision), 4 for instability and one for acetabular aseptic loosening. There were no aseptic failures of the stem. This novel modern monoblock TFT stem provided reliable femoral fixation and has increasingly supplanted the use of modular TFT stems for complex primary and revision surgery in our institution.
To compare the in vivo long-term fixation achieved by two acetabular components with different porous ingrowth surfaces using radiostereometric analysis (RSA). This was a minimum ten-year follow-up of a prospective randomized trial of 62 hips with two different porous ingrowth acetabular components. RSA exams had previously been acquired through two years of follow-up. Patients returned for RSA examination at a minimum of ten years. In addition, radiological appearance of these acetabular components was analyzed, and patient-reported outcome measures (PROMs) obtained.Aims
Methods
HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise mechanical properties, leave oxidation-prone residual free radicals, or both. Reports of mechanical failure of HXLPE acetabular liner rims raise concerns about thermal free radical stabilization and in vivo oxidization on implant properties. The purpose of this study is to explore the differences in the mechanical, physical and chemical properties of HXLPE acetabular liner rims after extended time in vivo between liners manufactured with different thermal free radical stabilization techniques. Remelted, single annealed and sequentially annealed retrieved HXLPE acetabular liners with in vivo times greater than 4.5 years were obtained from our implant retrieval laboratory. All retrieved liners underwent an identical sanitation and storage protocol. For mechanical testing, a total of 55 explants and 13 control liners were tested. Explant in vivo time ranged from 4.6 – 14 years and ex vivo time ranged from 0 – 11.6 years. Rim mechanical properties were tested by microindentation hardness testing using a Micromet II Vickers microhardness tester following ASTM standards. A subset of 16 explants with ex vivo time under one year along with five control liners were assessed for oxidation by FTIR, crystallinity by Raman spectroscopy, and evidence of microcracking by SEM. No significant difference in in vivo or ex vivo was found between thermal stabilization groups in either set of explants studied. In the mechanically tested explants, there was no significant correlation between in vivo time and Vickers hardness in any thermal stabilization group. A significant correlation was found between ex vivo time and hardness in remelted liners (r=.520, p = .011), but not in either annealed cohort. ANCOVA with ex vivo time as a covariate found a significant difference in hardness between the thermal free radical stabilization groups (p 0.1) was found in retrieved remelted (25%), single annealed (100%) and sequentially annealed (75%) liner rims. Crystallinity was increased in the subsurface region relative to control liners for both annealed, but not remelted, liner rims. Hardness was increased in oxidized rims for both annealed cohorts but not in the remelted cohort. Microcracking was only found along the surface of one unoxidized remelted liner rim. Mechanical properties were reduced at baseline and worsened after in vivo time for remelted HXLPE liner rims. Rim oxidation was detected in all groups. Oxidation was associated with increased crystallinity and hardness in annealed cohorts, but not remelted liners. Increased crystallinity and oxidation do not appear to be directly causing the worsened mechanical behavior of remelted HXLPE liner rims after extended in vivo time.
While Oxidized Zirconium (OxZr) femoral heads matched with highly cross-linked polyethylene (XLPE) have demonstrated the lowest rate of revision compared to other bearing couples in the Australian National Joint Registry, it has been postulated that these results may, in part, be due to the fact that a single company offers this bearing option with a limited combination of femoral and acetabular prostheses. The purpose of this study was to assess clinical and radiographic outcomes in a matched cohort of total hip replacements (THR) utilizing an identical cementless femoral stem and acetabular component with either an Oxidized Zirconium (OxZr) or Cobalt-Chrome (CoCr) femoral heads at a minimum of 10 years follow-up. We reviewed our institutional database to identify all patients whom underwent a THR with a single cementless femoral stem, acetabular component, XLPE liner and OxZr femoral head with a minimum of 10 years of follow-up. These were then matched to patients who underwent a THR with identical prosthesis combinations with CoCr femoral head by gender, age and BMI. All patients were prospectively evaluated with WOMAC, SF-12 and Harris Hip Score (HHS) preoperatively and postoperatively at 6 weeks, 3 months, 1 and 2 years and every 2 years thereafter. Charts and radiographs were reviewed to determine the revision rates and survivorship (both all cause and aseptic) at 10 years for both cohorts. Paired analysis was performed to determine if differences exist in patient reported outcomes. There were 208 OxZr THRs identified which were matched with 208 CoCr THRs. There was no difference in average age (OxZr, 54.58 years, CoCr, 54.75 years), gender (OxZr 47.6% female, CoCr 47.6% female), and average body max index (OxZr, 31.36 kg/m2, CoCr, 31.12 kg/m2) between the two cohorts. There were no significant differences preoperatively in any of the outcome scores between the two groups (WOMAC (p=0.449), SF-12 (p=0.379), HHS(p=0.3718)). Both the SF12 (p=0.446) and the WOMAC (p=0.278) were similar between the two groups, however the OxZr THR cohort had slightly better HHS compared to the CoCr THR cohort (92.6 vs. 89.7, p=0.039). With revision for any reason as the end point, there was no significant difference in 10 years survivorship between groups (OxZr 98.5%, CoCr 96.6%, p=0.08). Similarly, aseptic revisions demonstrated comparable survivorship rates at 10 year between the OxZr (99.5%) and CoCr groups (97.6%)(p=0.15). Both THR cohorts demonstrated outstanding survivorship and improvement in patient reported outcomes. The only difference was a slightly better HHS score for the OxZr cohort which may represent selection bias, where OxZr implants were perhaps implanted in more active patients. Implant survivorship was excellent and not dissimilar for both the OxZr and CoCr groups at 10 years. Therefore, with respect to implant longevity at the end of the first decade, there appears to be no clear advantage of OxZr heads compared to CoCr heads when paired with XLPE for patients with similar demographics. Further follow-up into the second and third decade may be required to demonstrate if a difference does exist.
Trunnion wear has been reported as a cause for failure of modern total hip replacement implants. While there are several reports on the prevalence of trunnion corrosion with specific stem designs, little is known about the prevalence of this problem across other femoral stem designs. The purpose of this study is to review three commonly used uncemented femoral stems and to correlate any established risk factors with rates of revision. We reviewed all patients followed prospectively over a 15-year period (March 2000 to September 2015) who underwent total hip arthroplasty with one of three modern uncemented femoral stem designs. All of the stems were made of titanium (Ti6Al4V alloy) with a 12/14 taper design. We included only metal (cobalt chromium) on highly cross-linked polyethylene articulations. We evaluated age, gender, body mass index (BMI), femoral head size, head length, neck angle and offset as potential risk factors for all cause revision and revision excluding infection by univariate analysis. We performed a logistic regression analysis with odds ratios (OR) for each parameter for both all cause revision as well as with infection excluded. We used a p value of <0.05 as a level of significance.Introduction
Methods
HXLPE acetabular liners were introduced to reduce wear-related complications in THA. However, post-irradiation thermal free radical stabilization can compromise mechanical properties, leave oxidation-prone residual free radicals, or both. Reports of mechanical failure of HXLPE acetabular liner rims raise concerns about thermal free radical stabilization and Remelted, single annealed and sequentially annealed retrieved HXLPE acetabular liners with in vivo times greater than 4.5 years were obtained from our implant retrieval laboratory. All retrieved liners underwent an identical sanitation and storage protocol. For mechanical testing, a total of 55 explants and 13 control liners were tested. Explant Introduction
Material and methods
The purpose of the present study was to compare patient-specific instrumentation (PSI) and conventional surgical instrumentation (CSI) for total knee arthroplasty (TKA) in terms of early implant migration, alignment, surgical resources, patient outcomes, and costs. The study was a prospective, randomized controlled trial of 50 patients undergoing TKA. There were 25 patients in each of the PSI and CSI groups. There were 12 male patients in the PSI group and seven male patients in the CSI group. The patients had a mean age of 69.0 years (Aims
Patients and Methods
The infection rate after total joint arthroplasty (TJA) has been shown to be 1–2% in multiple series and registry data. Irrigation, debridement, and polyethylene exchange (IDPE) is a common first line treatment in many cases of acute prosthetic joint infection (PJI). The reinfection rate in open IDPE procedures is variable with studies showing reinfection rates of 10–70% depending on various patient and microbial factors. Our pilot study aimed to determine if the bacterial load in infected total joints was sufficiently reduced by IDPE to allow for the use of post-debridement cultures as an independent marker of procedural success. 46 prosthetic joint infections underwent irrigation and debridement using 6L of normal saline and 3L of a normal saline and bacitracin mixture prior to the insertion of a new polyethylene liner. This protocol utilized a single equipment setup with all surgical members donning new gloves prior to polyethylene exchange. Between 3 and 5 intraoperative cultures were obtained both prior to and after debridement as per the surgeon's standard protocol. A two-tailed student's t-test was used to evaluate for any differences in the rate of positive culture between these two groups.Introduction
Methods
The success of total knee replacement (TKR) surgery can be attributed to improvements in TKR design, instrumentation, and surgical technique. Over a decade ago oxidized zirconium (OxZr) femoral components were introduced as an alternative bearing surface to cobalt-chromium (CoCr), based on strong in-vitro evidence, to improve the longevity of TKR implants. Early reports have demonstrated the clinical success of this material however no long-term comparative studies have demonstrated the superiority of OxZr implants compared to a more traditional CoCr implant. This study aims to compare long-term survivorship and outcomes in OxZr and CoCr femoral components in a single total knee design. We reviewed our institutional database to identify all patients whom underwent a TKA with a posterior stabilized OxZr femoral component with a minimum of 10 years of follow-up. These were then matched to patients whom underwent a TKA with the identical design posterior stabilized CoCr femoral component during the same time period by gender, age and BMI. All patients had their patella resurfaced. All patients were prospectively evaluated preoperatively and postoperatively at 6 weeks, 3 months, 12 months, 2 years and every 1 to 2 years thereafter. Prospectively collected clinical outcome measures included, Western Ontario and McMaster Universities osteoarthritis index (WOMAC), Short-Form 12 (SF-12) and Knee Society clinical rating scores (KSCRS). Charts and radiographs were reviewed to determine the revision rates and survivorship (both all cause and aseptic) at 10 years allowing comparison between the two cohorts. Paired analysis was performed to determine if differences existed in patient reported outcomes.Purpose
Methods
The effectiveness of patient specific instrumentation (PSI) to perform total knee arthroplasty (TKA) remains controversial. Multiple studies have been published that reveal conflicting results on the effectiveness of PSI, but no study has analyzed the contact kinematics within knee joints replaced with the use of PSI. Since a departure from normal kinematics can lead to eccentric loading, premature wear, and component loosening, studying the kinematics in patients who have undergone TKA with PSI can provide valuable insight on the ability of PSI to improve functionality and increase longevity. The goal of the present study was to compare femoral and tibial component migration (predictive of long-term loosening and revision) and contact kinematics following TKA using conventional instruments (CI) and PSI based surgical techniques. The study was designed as a prospective, randomized controlled trial of 50 patients, with 25 patients each in the PSI and CI groups, powered for radiostereometric analysis (RSA). Patients in the PSI group received an MRI and standing 3-foot x-rays to construct patient-specific cut-through surgical guides for the femur and tibia with a mechanical limb alignment. All patients received the same posterior-stabilized implant with marker beads inserted in the bone around the implants to enable RSA imaging. Patients underwent supine RSA exams at multiple time points (two and six weeks, three and six months, and one and two years). At 2 years post-op, a series of RSA radiographs were acquired at different knee flexion angles, ranging in 20° increments from 0° to 120°, to measure the tibiofemoral contact kinematics. Migrations of the femoral and tibial components were calculated using model-based RSA software. Kinematics were measured for each condyle for magnitude of excursion, contact location, and stability.Introduction
Methods
The purpose of this study is to estimate the cost-effectiveness of performing total hip arthroplasty (THA) versus nonoperative management (NM) in non-obese (BMI 18.5–24.9), overweight (25–29.9), obese (30–34.9), severely-obese (35–39.9), morbidly-obese (40–49.9), and super-obese (50+) patients. We constructed a state-transition Markov model to compare the cost-utility of THA and NM in the six above-mentioned BMI groups over a 15-year time period. Model parameters for transition probability (i.e. risk of revision, re-revision, death), utility, and costs (inflation adjusted to 2017 US dollars) were estimated from the literature. Direct medical costs of managing hip arthritis were accounted in the model. Indirect societal costs were not included. A 3% annual discount rate was used for costs and utilities. The primary outcome was the incremental cost-effectiveness ratio (ICER) of THA versus NM. One-way and Monte Carlo probabilistic sensitivity analysis of the model parameters were performed to determine the robustness of the model.Introduction
Methods
The aim of this study was to determine whether there is a difference
in the rate of wear between acetabular components positioned within
and outside the ‘safe zones’ of anteversion and inclination angle. We reviewed 100 hips in 94 patients who had undergone primary
total hip arthroplasty (THA) at least ten years previously. Patients
all had the same type of acetabular component with a bearing couple
which consisted of a 28 mm cobalt-chromium head on a highly crosslinked
polyethylene (HXLPE) liner. A supine radiostereometric analysis
(RSA) examination was carried out which acquired anteroposterior
(AP) and lateral paired images. Acetabular component anteversion
and inclination angles were measured as well as total femoral head
penetration, which was divided by the length of implantation to
determine the rate of polyethylene wear.Aims
Patients and Methods
The aim of this study was to evaluate the long-term inducible
displacement of cemented tibial components ten years after total
knee arthroplasty (TKA). A total of 15 patients from a previously reported prospective
trial of fixation using radiostereometric analysis (RSA) were examined
at a mean of 11 years (10 to 11) postoperatively. Longitudinal supine
RSA examinations were acquired at one week, one year, and two years
postoperatively and at final follow-up. Weight-bearing RSA examinations
were also undertaken with the operated lower limb in neutral and
in maximum internal rotation positions. Maximum total point motion
(MTPM) was calculated for the longitudinal and inducible displacement examinations
(supine Aims
Patients and Methods
The purpose of the present study was to examine the long-term
fixation of a cemented fixed-bearing polished titanium tibial baseplate
(Genesis ll). Patients enrolled in a previous two-year prospective trial (n
= 35) were recalled at ten years. Available patients (n = 15) underwent
radiostereometric analysis (RSA) imaging in a supine position using
a conventional RSA protocol. Migration of the tibial component in
all planes was compared between initial and ten-year follow-up.
Outcome scores including the Knee Society Score, Western Ontario
and McMaster Universities Arthritis Index, 12-item Short Form Health
Survey, Forgotten Joint Score, and University of California, Los
Angeles Activity Score were recorded.Aims
Patients and Methods
The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized zirconium (Oxinium) has been introduced for use in both total hip arthroplasty (THA) and total knee arthroplasty (TKA). The aetiology of wear is multifactorial and includes adhesive, abrasive, third-body and fatigue wear mechanisms. Oxinium femoral components have demonstrated clear improvements in wear characteristics in-vitro. The purpose of this prospective study was to evaluate the mid-term (minimum 5 year) clinical and radiographic results and survivorship of the Genesis II™ knee implant system using an Oxinium femoral component. Between January 2001 and December 2008, 382 Genesis II Oxinium (Smith & Nephew) primary total knee arthroplasties (TKA) (313 patients) were implanted at our institution. A comparison with a cohort of 317 patients (382 knees) who received a Genesis II knee implant using a ‘conventional’ cobalt-chrome (Co-Cr) femoral component was performed during the same time period. Prospective data was collected on all patients including demographics (age, BMI, diagnosis) as well as pre and postoperative clinical outcome scores (SF-12, WOMAC, and knee society clinical rating scores (KSCRS). Radiological analysis for evidence of osteolysis and loosening was performed in all patients. Comparisons were performed to determine differences between the Oxinium and Cobalt Chrome cohorts. Kaplan-Meier survival analysis was performed to show cumulative survival over time. Failure was defined as femoral component revision due to any cause.INTRODUCTION
METHODS
Total knee arthroplasty (TKA) has proven clinical success with reported longterm survivorship of 92% in the elderly population. Concerns regarding increased loosening rates and potential need for multiple revision surgeries in patients younger than 60 years have traditionally discouraged TKA in younger patients. The purpose of this study was to review the longterm clinical and radiographic results of patients under the age of 45 yrs who underwent a total knee replacement. A retrospective review of our institutional database was performed between January 1996 and December 2004 The criteria for inclusion in the study were as follows: age 45 years or younger at index arthroplasty, cemented condylar prosthesis, and a minimum follow-up of 9 years. A total of 39 consecutive primary cemented condylar knee arthroplasties in patients with end stage arthritis were performed in 36 patients who were 45 years or younger. The median length of followup was 13.6 years. There were 18 men and 21 women. The mean age was 40.6 years (range, 28–44). There were 23 right, 16 left, and 3 bilateral procedures. The mean body mass index was 31.2 kg/m2 Clinical and radiological evaluations were performed before surgery and at 6 weeks, 3 months, 1 year and every 2 years subsequently. Knee scores were calculated using the Knee Society Clinical Rating Scores (KSCRS), SF-12 and WOMAC scores to assess pre, and post-operative function. Postoperative anteroposterior and lateral views were assessed for femoral and tibial component position, alignment, and presence or progression of radiolucent lines at the bone-cement and prosthesis-cement interfaces Statistical analysis was performed using the 2-sample test or Wilcoxon rank sum test for comparison of continuous variables. Kaplan-Meier analysis of implant survival was performed with failure defined as femoral component revision due to any cause.Introduction
Materials and Methods
The purpose of this study was to compare the long-term results
of primary total hip arthroplasty (THA) in young patients using
either a conventional (CPE) or a highly cross-linked (HXLPE) polyethylene
liner in terms of functional outcome, incidence of osteolysis, radiological
wear and rate of revision. We included all patients between the ages of 45 and 65 years
who, between January 2000 and December 2001, had undergone a primary
THA for osteoarthritis at our hospital using a CPE or HXLPE acetabular
liner and a 28 mm cobalt-chrome femoral head. From a total of 160 patients, 158 (177 hips) were available for
review (CPE 89; XLPE 88). The mean age, body mass index (BMI) and
follow-up in each group were: CPE: 56.8 years (46 to 65); 30.7 kg/m2 (19
to 58); 13.2 years (2.1 to 14.7) and HXLPE: 55.6 years (45 to 65);
BMI: 30 kg/m2 (18 to 51); 13.1 years (5.7 to 14.4).Aims
Methods
The development of new bearing surfaces for total joint replacement is constantly evolving. Oxidized zirconium (Oxinium) has been introduced for use in total hip arthroplasty (THA) and total knee arthroplasty (TKA). One of the most common causes of failure of THA is aseptic loosening secondary to polyethylene wear debris. The aetiology of wear is multifactorial and includes adhesive, abrasive, third-body and fatigue wear mechanisms. Oxidized zirconium is a relatively new material that features an oxidized ceramic surface chemically bonded to a hard metallic substrate. This material possesses the reduced polyethylene wear characteristics of a ceramic, without the increased risk of implant fracture While short-term results of oxidized zirconium in THA have been reported, there have been no reports on retrieved highly cross linked PE articulating with Oxinium headsObjectives: The purpose of this study was to compare matched pairs of retrieved highly cross-linked polyethylene (XLPE) acetabular liners with OxZr and CoCr articulation. The liners were examined for evidence of wear damage, including articular surface damage, impingement, screw-hole creep, and rim cracksIntroduction
Objectives
The purpose of this study was to compare clinical
outcomes of total knee arthroplasty (TKA) after manipulation under
anaesthesia (MUA) for post-operative stiffness with a matched cohort
of TKA patients who did not requre MUA. In total 72 patients (mean age 59.8 years, 42 to 83) who underwent
MUA following TKA were identified from our prospective database
and compared with a matched cohort of patients who had undergone
TKA without subsequent MUA. Patients were evaluated for range of
movement (ROM) and clinical outcome scores (Western Ontario and
McMaster Universities Arthritis Index, Short-Form Health Survey,
and Knee Society Clinical Rating System) at a mean follow-up of
36.4 months (12 to 120). MUA took place at a mean of nine weeks
(5 to 18) after TKA. In patients who required MUA, mean flexion
deformity improved from 10° (0° to 25°) to 4.4° (0° to 15°) (p <
0.001),
and mean range of flexion improved from 79.8° (65° to 95°) to 116°
(80° to 130°) (p <
0.001). There were no statistically significant
differences in ROM or functional outcome scores at three months,
one year, or two years between those who required MUA and those
who did not. There were no complications associated with manipulation At most recent follow-up, patients requiring MUA achieved equivalent
ROM and clinical outcome scores when compared with a matched control
group. While other studies have focused on ROM after manipulation,
the current study adds to current literature by supplementing this
with functional outcome scores. Cite this article: