A common feature of retrieved ceramic-on-ceramic (CoC) hips is the presence of metal transfer on the femoral head. This metal transfer represents an important change in the articulating surface and can have consequences in terms of lubrication, friction, wear, and squeaking. Given the potential impact of metal transfer on the performance of CoC bearing couples, a good understanding of the factors surrounding its occurrence is warranted. This study documents the metal transfer onto a ceramic femoral head with two subluxations onto the rim of the cup which occurred during surgery. This metal transfer is compared to that on other ceramic heads retrieved for various reported reasons, including squeaking, pain and loosening. The first ten retrieved alumina heads of current ceramic technology (Ceramtec, Plochingen, Germany) submitted to our retrieval laboratory were assessed to document the phenomenon of metal transfer. Nine devices underwent in vivo service (mean duration 32 mo., range 13 to 84) and the tenth device was removed intra-operatively and serves as an instructive control case. It was impacted onto a trunnion and during final testing for stability subluxed anteriorly over the titanium lip of the cup. The metal transfer was immediately noted by the surgeon and the head was removed. All ceramic heads were examined under light microscopy (Nikon Dissecting Microscope, Tokyo, Japan) and white light optical profilometry (NewView 7300, Zygo, Middlefield, CT). The control ceramic head showed two distinct metal transfer streaks from two discrete subluxation events that were documented by the surgeon (IMT). Those streaks are aligned in a direction approximately 24o to the right (clockwise) of a line through the polar apex of the head and parallel to the axis of the femoral neck. Microscopy and profilometry indicate that they were laid down in a direction from equator-toward-pole. Seven of the retrieved ceramic heads showed streaks of metal transfer that are very similar to those on the control ceramic head in terms of: alignment (equator-toward-pole, 20 to 45o off-axis) width (tapered point growing to approximately 1.0 to 1.5 mm), depth of metal deposition (0.25 to 0.40 μm), and depositional texture. It is notable that the metal transfer streaks commonly observed on retrievals bear a close resemblance to that caused by a single intra-operative event wherein a hip abduction force pulled the head into contact with the titanium cup/liner rim. An important implication is that this demonstrates that metal transfer can occur with a single instance of rim contact, wherein the femoral head is forced against the metal cup rim. If metal transfer onto the head were to occur during final reduction of the hip, its presence may well be undetected and any deleterious in vivo impact of the metal transfer would be in effect from the day of surgery.
We studied the tapered interface between the head and the neck of 139 modular femoral components of hip prostheses which had been removed for a variety of reasons. In 91 the same alloy had been used for the head and the stem; none of them showed evidence of corrosion. In contrast, there was definite corrosion in 25 of the 48 prostheses in which the stem was of titanium alloy and the head of cobalt-chrome. This corrosion was time-dependent: no specimens were corroded after less than nine months in the body, but all which had been in place for more than 40 months were damaged. We discuss the factors which may influence the rate of these changes and present evidence that they were due to galvanically-accelerated crevice corrosion, which was undetected in previous laboratory testing of this type of prosthesis.