Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_IV | Pages 406 - 406
1 Nov 2011
Fritsche A Zietz C Teufel S Kolp W Tokar I Mauch C Mittelmeier W Bader R
Full Access

Sufficient primary stability of the acetabular cup is essential for stable osseous integration of the implant after total hip arthroplasty. By means of under-reaming the cavities press-fit cups gain their primary stability in the acetabular bone stock. These metal-backed cups are inserted intra-operatively using an impact hammer.

The aim of this experimental study was to obtain the forces exerted by the hammer both in-vivo and in-vitro as well as to determine the resulting primary stability of the cups in-vitro.

Two different artificial bone models were applied to simulate osteoporotic and sclerotic bone. Polymeth-acrylamid (PMI, ROHACELL 110 IG, Gaugler & Lutz, Germany) was used as an osteoporotic bone substitute, whereas a composite model made of a PMI-Block and a 4 mm thick (cortical) Polyvinyl chloride (PVC) layer (AIREX C70.200, Gaugler & Lutz, Germany) was deployed to simulate sclerotic bone. In all artificial bone blocks cavities were reamed for a press-fit cup (Trident PSL, Size 56mm, Stryker, USA) using the original surgical instrument. The impactor of the cup was equipped with a piezoelectric ring sensor (PCB Piezotronics, Germany). Using the standard surgical hammer (1.2kg) the acetabular cups were implanted into the bone substitute material by a male (95kg) and a female (75kg) surgeon. Subsequently, primary stability of the implant (n=5) was determined in a pull-out test setup using a universal testing machine (Z050, Ziwck/Roell, Germany).

For validation the impaction forces were recorded intra-operatively using the identical press-fit cup design.

An average impaction force of 4.5±0.6kN and 6.3±0.4kN using the PMI and the composite bone models respectively were achieved by the female surgeon in vitro.

7.4±1.5kN and 7.7±0.8kN respectively were obtained by the male surgeon who reached an average in-vivo impaction force of 7.5±1.6kN.

Using the PMI-model a pull-out force of 298±72N and 201±112N were determined for the female and male surgeons respectively. However, using the composite bone model approximately half the pull-out force was measured for the female surgeon (402±39N) compared to the male surgeon (869±208N).

Our results show that impact forces measured in-vitro correspond to the data recorded in-vivo. Using the osteoporotic bone model the pull-out test revealed that too high impaction forces affect the pull-out force negatively and hence the primary implant stability is reduced, whereas higher impact forces improve primary stability considerably in the sclerotic bone model. In conclusion, the amount of impaction force contributes to the quality of the obtained primary cup stability substantially and should be adjusted intra-operatively according to the bone quality of each individual patient.