Anchorage of pedicle screw rod instrumentation in the elderly spine with poor bone quality remains challenging. Our study aims to evaluate how the screw bone anchorage is affected by screw design, bone quality, loading conditions, and cementing techniques. Micro-finite element (µFE) models were created from micro-CT (μCT) scans of vertebrae implanted with two types of pedicle screws (L: Ennovate and R: S4). Simulations were conducted for a 10 mm radius region of interest (ROI) around each screw and for a full vertebra (FV) where different cementing scenarios were simulated around the screw tips. Stiffness was calculated in pull-out and anterior bending loads.Aims
Methods
Stemless shoulder implants have recently gained increasing popularity. Advantages include an anatomic reconstruction of the humerus with preservation of bone stock for upcoming revisions. Several implant designs have been introduced over the last years. However, only few studies evaluated the impact of the varying designs on the load transfer and bone remodeling. The aim of this study was to compare the differences between two stemless shoulder implant designs using the micro finite element (µFE) method. Two cadaveric human humeri (low and high bone mineral density) were scanned with a resolution of 82µm by high resolution peripheral quantitative computer tomography (HR-pQCT). Images were processed to allow virtual implantation of two types of reverse-engineered stemless humeral implants (Implant 1: Eclipse, Arthrex, with fenestrated cage screw and Implant 2: Simpliciti, Tornier, with three fins). The resulting images were converted to µFE models consisting of up to 78 million hexahedral elements with isotropic elastic properties based on the literature. These models were subjected to two loading conditions (medial and along the central implant axis) and solved for internal stresses with a parallel solver (parFE, ETH Zurich) on a Linux Cluster. The bone tissue stresses were analysed according to four subregions (dividing plane: sagittal and frontal) at two depths starting from the bone-implant surface and the distal region ending distally from the tip of Implant 1 (proximal, distal)Introduction
Materials and Methods
Pelvic inclination angle (PIA) and lumbar lordotic angle (LLA) were measured on the standing lateral X-rays before operation and 1-month, 6-month and 1-year post-operation. The effects of patient age, BMI, ROM of the hip, preoperative PIA and LLA on the changes of PIA were statistically investigated using multiple linear regression analysis. We divided the patients into three groups with regard to pre-operative PIA (anterior group: PIA <
0, intermediate group: 0 <
PIA <
10, posterior group: PIA >
10) and with regard to pre-operative LLA (insufficient group: LLA <
20, moderate group: 20 <
LLA <
40, severe group: LLA >
40).