Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_IV | Pages 616 - 616
1 Oct 2010
Heyse T Becher C Fuchs-Winkelmann S Hurschler C Kron N Markus S Ostermeier S Tibesku C
Full Access

Objective: Decreased quadriceps strength may contribute to anterior knee pain after total knee arthroplasty (TKA). The quadriceps force necessary to establish full extension is strongly dependent on the position and the relative length of the lever arms over the knee joint. The purpose of this in vitro study was to investigate the amount of quadriceps force required to extend the knee isokinetically after TKA in dependence of different prosthesis designs and the state of the posterior cruciate ligament (PCL).

Methods: Eight fresh frozen human knee specimens were tested in a kinematic device that simulated an isokinetic knee extension cycle from 120° of flexion to full extension. Knee motion was driven by a hydraulic cylinder applying sufficient force to the quadriceps tendon to produce an extension moment of 31 Nm. The quadriceps force was measured using a load cell attached to the quadriceps tendon after implantation of a cruciate retaining (CR) TKA (Genesis II, Smith& Nephew, Memphis, Tn, USA) applying a conventional and a highly conforming polyethylene (PE) inlay before and after resection of the PCL. Finally, the femoral component of the CR TKA was replaced by a posterior stabilized (PS) design and measurements were redone.

Results: No significant differences in the average quadriceps force were detected between the different PCL retaining inlays (CR, highly conforming) as long as the PCL was intact. However, after resection of the PCL, the required quadriceps force increased significantly for both designs (CR: 4.7%, p < 0.01, Highly conforming: 3.5%, p < 0.03). After implantation of the PS femoral component quad force decreased to its initial levels with forces significantly lower compared to the PCL deficient knees provided with a CR (−6.0%, p < 0.01) or highly conforming (−5.1%, p < 0.01) inlay. With a PS design average quadriceps extension force was not significantly different from cruciate retaining TKA inlays at an intact PCL.

Conclusions: The data of this in vitro study suggest that the quadriceps extension force is significantly higher for knees after cruciate retaining TKA with PCL deficiency, independent of the use of a CR or DD inlay. Thus, the integrity of the PCL should be secured in clinical practice when using a cruciate preserving TKA design.