Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 21 - 21
4 Apr 2023
Meinshausen A Büssemaker H Viet Duc B Döring J Voropai V Müller A Martin A Berger T Schubert A Bertrand J
Full Access

Periprosthetic joint infections (PJI) are one of the most common reasons for orthopedic revision surgeries. In previous studies, it has been shown that silver modification of titanium (Ti-6Al-4V) surfaces by PMEDM (powder mixed electrical discharge machining) has an antibacterial effect on Staphylococcus aureus adhesion. Whether this method also influences the proliferation of bacteria has not been investigated so far. Furthermore, the effect is only limitedly investigated on the ossification processes. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process of PMEDM machined surfaces modified by integration of silver.

In this study, we analyzed adhesion and proliferation of S. aureus in comparison to of surface roughness, silver content and layer thickness of the silver-integrated-PMEDM surfaces (N = 5). To test the in vitro ossification, human osteoblasts (SaOs-2) and osteoclasts (differentiated from murine-bone-marrow-macrophages) were cultured on the silver surfaces (N = 3).

We showed that the attachment of S. aureus on the surfaces was significantly lower than on the comparative control surfaces of pure Ti-6Al-4V without incorporated silver, independently of the measured surface properties. Bacterial proliferation, however, was not affected by the silver content. No influence on the in vitro ossification was observed, whereas osteoclast formation was drastically reduced on the silver-modified surfaces.

We showed that 1 to 3% of silver in the surface layer significantly reduced the adhesion of S. aureus, but not the proliferation of already attached bacteria. At the same time, no influence on the in vitro ossification was observed, while no osteoclasts were formed on the surface. Therefore, we state that PMEDM with simultaneous silver modification of the machined surfaces represents a promising technology for endoprostheses manufacturing to reduce infections while at the same time optimizing bone ingrowth.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 17 - 17
1 Apr 2018
Daumer M Fürmetz J Keppler A Höfling H Müller A Hariry S Schieker M Grassi M Greese B Nuritdinow T Aigner G Lederer C Böcker W
Full Access

Mobility plays an important role, in particular for patients with osteoporosis and after trauma surgery, both as an outcome and as treatment. Mobility is closely linked to the patient”s quality of life and exercise is a powerful additional treatment option. In order to be able to generate an evidence base to evaluate various surgical and non-surgical treatment options, objective measurements of patient mobility and exercise over a certain time period are needed. Wearables are a promising candidate, with obvious advantages compared to questionnaires and/or PROs. However, when extracting parameters with wearables, one often faces the problem of algorithms not performing well enough for special cases like slow gait speeds or impaired gait, as they typically appear in this patient group. We plan to further extend the applicability of the actibelt system (3D accelerometer, 100Hz), in particular to improve the measurement precision of real-world walking speed in slow and impaired walking. We are using a special measurement wheel including a rotating 3D accelerometer that allows to capture high quality real-world walking speed and distance measurements, and a mobile high resolution camera system. In a first block 20 patients with osteoporosis were included in the study at the Ludwigs-Maximilians-University”s Department of General, Trauma and Reconstructive Surgery in Munich, Germany and equipped with an actibelt. Patients were asked to walk as “normal” as possible, while wearing their usual apparel, in the building and outside the building. They climbed stairs and had to deal with all unexpected “stop and go” events that appear in real-world walking. Various gait parameters will be extracted from the recorded data and compared to the gold standard. We will then tune the existing algorithms as well as new algorithms (e.g. step detection based on continuous wavelet transformation) to explore potential improvements of both step detection and speed estimation algorithms. Further refinement and validation using real world data is warranted.


Bone & Joint Research
Vol. 1, Issue 5 | Pages 78 - 85
1 May 2012
Entezari V Della Croce U DeAngelis JP Ramappa AJ Nazarian A Trechsel BL Dow WA Stanton SK Rosso C Müller A McKenzie B Vartanians V Cereatti A

Objectives

Cadaveric models of the shoulder evaluate discrete motion segments using the glenohumeral joint in isolation over a defined trajectory. The aim of this study was to design, manufacture and validate a robotic system to accurately create three-dimensional movement of the upper body and capture it using high-speed motion cameras.

Methods

In particular, we intended to use the robotic system to simulate the normal throwing motion in an intact cadaver. The robotic system consists of a lower frame (to move the torso) and an upper frame (to move an arm) using seven actuators. The actuators accurately reproduced planned trajectories. The marker setup used for motion capture was able to determine the six degrees of freedom of all involved joints during the planned motion of the end effector.