header advert
Results 1 - 2 of 2
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 28 - 28
1 Jan 2017
Berti L Caravaggi P Lullini G Tamarri S Giannini S Garibizzo G Leardini A
Full Access

The flat foot is a frequent deformity in children and results in various levels of functional alterations. A diagnosis based on foot morphology is not sufficient to define the therapeutic approach. In fact, the degree of severity of the deformity and the effects of treatments require careful functional assessment. In case of functional flatfoot, subtalar arthroereisis is the surgical treatment of choice. The aim of this study is to evaluate and compare the functional outcomes of two different bioabsorbable implants designed for subtalar arthroereisis in childhood severe flat foot by means of thorough gait analysis.

Ten children (11.3 ± 1.6 yrs, 19.7 ± 2.8 BMI) were operated for flat foot correction [1,2] in both feet, one with the calcaneo-stop method, i.e. a screw implanted into the calcaneus, the other with an endoprosthesis implanted into the sinus-tarsi. Gait analysis was performed pre- and 24 month post-operatively using a 8-camera motion system (Vicon, UK) and a surface EMG system (Cometa, Italy) to detect muscular activation of the main lower limb muscles. A combination of established protocols, for lower limb [3] and multi-segment foot [4] kinematic analysis, was used to calculate joint rotations and moments during three level walking trials for each patient. At the foot, the tibio-talar, Chopart, Lisfranc, 1st metatarso-phalangeal joints were tracked in three-dimensions, together with the medial longitudinal arch.

Significant differences in standard X-ray measurements were observed between pre- and post-op, but not between the two treatment groups. Analysis of the kinematic variables revealed functional improvements after surgery. In particular, a reduction of eversion between the shank and calcaneus (about 15° on average) and a reduction of inversion between metatarsus and calcaneus (about 18° on average) were detected between pre- and post-operatively after both treatments. Activation of the main plantar/dorsiflexor muscles was similar at both pre- and post-op assessments with both implants.

The combined lower limb and multi-segment foot kinematic analyses were found adequate to provide accurate functional assessment of the feet and of the lower limbs. Both surgical treatments restored nearly normal kinematics of the foot and of the lower limb joints, associated also to a physiologic muscular activation.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 116 - 116
1 Jan 2017
Lullini G Tamarri S Caravaggi P Leardini A Berti L
Full Access

Rehabilitation systems based on inertial measurement units (IMU) and bio-feedbacks are increasingly used in many different settings for patients with neurological disorders such as Parkinson disease or balance impairment, and more recently for functional recover after orthopedic surgical interventions or injuries especially concerning the lower limb. These systems claim to provide a more controlled and correct execution of the motion exercises to be performed within the rehabilitation programs, hopefully resulting in a better outcomes with respect to the traditional direct support of a physical therapists. In particular recruitment of specific muscles during the exercise is expression of its correct and finalized execution. The objective of this study was to compare muscular activation patterns of relevant lower limb muscles during different exercises performed with traditional rehabilitation and with a new validated system based on IMU and biofeedback (Riablo, Corehab, Trento, Italy).

Twelve healthy subjects (mean age 28.1 ± 3.9, BMI 21.8± 2.1) were evaluated in a rehabilitation center. Muscular activation pattern of gluteus maximum, gluteus medium, rectus femoris and biceps femoris was recorded through surface EMG (Cometa; Milan) during six different motion tasks: hip abduction in standing position, lunge, hip flexion with extended knee in standing position, lateral lunge, hip abduction with extended knee in lateral decubitus, squat. Subjects performed 10 repetitions of each task for a total of 100 repetitions per motion task, with and without Riablo System as well as during standard rehabilitation. An additional IMU was positioned on the shank in order to detect beginning and end of each repetition. A single threshold algorithm was used to identify muscle activation timing.

During hip abduction in standing position, gluteus maximum and rectus femoris showed a better and longer activation pattern while using Riablo compared to traditional rehabilitation. Gluteus medium showed a similar activation pattern whereas biceps femoris showed no activation from 30% to 80% using Riablo. During squat, rectus femoris and biceps femoris had a similar activation pattern with and without Riablo whereas gluteus maximum and gluteus medium showed a better activation pattern while using Riablo.

The recent development of innovative rehabilitation systems meets the need of manageable, reliable and efficient instruments able to reduce rehabilitation costs but with the same good clinical outcomes. Muscular activation patterns of relevant lower limb muscles during selected motion tasks reveal their correct execution. The use of this new rehabilitation system based on IMU and biofeedback seems to allow a more selective and effective muscular recruitment, likely due to the more correct and controlled execution of the exercise, particularly for the identification and interdiction of possible compensation mechanisms.