Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_I | Pages 145 - 145
1 Mar 2009
Albanese C Lucidi M Rendine M Santori N Pavan L Passariello R Santori F
Full Access

Introduction: Bone resorption in the proximal femur is commonly seen after cementless total hip arthroplasty (THA). One of the main determinants of bone remodeling seems to be prosthesis design. With DXA, the amount of bone mass after THA can be precisely determined. We evaluated the BMD behavior of two different ultra-short implants with proximal load transfer, in order to study how a design can affect femoral bone remodeling. The rationale behind these designs is the experimental evidence that loading the medial and the lateral flare effectively preserves in time metaphyseal bone stock. Moreover, biomechanical tests have confirmed that this kind of stress distribution allows to remove the diaphyseal portion of the stem.

Methods: A total of 33 patients operated with a cementless femoral implant were included in this study. Two slightly different designs were tested: Type 1 (Stanmore Orthopaedics), featuring an extremely short distal stem (n=10), and Type 2 (DePuy International Ltd), where distal stem was virtually absent (n=23). All implants were customized based on pre-operative CT data. The main features of these implants were the ultra-short stem and the large lateral flare. The rationale was to preserve bone stock and gain a more physiologic load transfer to the proximal femur thus preventing stress-shielding. DXA examination was performed on all patients 3 years after THA. Due to the peculiar design, a specific protocol of analysis with five regions of interest (ROI) was developed: ROI1 (greater trochanter), ROI2 and ROI4 (respectively lateral and medial of the ultra-short stem), ROI3 (below the tip) and ROI5 (calcar). The same protocol was applied to the non-operated contralateral femur and percentage contralateral BMD was calculated with the following formula: (BMD of operated hip/BMD of contralateral hip)×100. A standard DXA of contralateral hip and lumbar spine was also performed to evaluate the skeletal bone mineralization.

Results: No differences were found in the anthropometric data and sex between the two groups. Age was found lower (p=0.001) in Type 2. BMD of lumbar spine and contralateral femur from standard DXA were not different in the two groups. BMD was higher in Type 2 in ROI4 and ROI5 (p< 0.001). The calculated percentage contralateral BMD was higher in Type 2 in ROI2 (p=0.009), ROI4 (p< 0.001) and ROI5 (p=0.01).

Conclusions: This study confirms that progressive shortening of femoral stem produces a more proximal loading, which effectively preserves in time metaphyseal bone stock and increases periprosthetic BMD in the medial ROIs. The increased BMD in periprosthetic lateral and medial proximal regions in the operated hip respect to the contralateral femur seems to be due not only to the increased weight-bearing, but also to the specific ultra-short stem design.