To evaluate the ability of different combinations of antibiotic loaded cement to inhibit bacteria growth and biofilm formation. Cement beads were aseptically prepared using Palacos R (plain 40g PMMA cement) or Palacos R+G (40g PMMA cement containing industrially added 0.5g of gentamicin), with or without supplementary antibiotics as follows: Palacos R; Palacos R+G; Palacos R The group 2 cement beads were initially eluted in broth at 37o C for 72hours then transferred to fresh broth containing a known concentration of bacteria. The group 1 samples were not eluted but directly immerse in culture broth containing bacteria. All samples were thereafter incubated at 37oC for 24 hours. After incubation, group 1 samples were visually assessed for bacterial growth, while for the group 2 samples, biofilm formation were quantified using ultrasonication and viable bacteria counting technique. Three proficient biofilm forming Aim
Method
Cephalasporin antibiotics have been commonly used for prophylaxis against surgical site infection. To prevent Clostridium difficile, the preferential use of agents such as flucloxacillin and gentamicin has been recommended. The aim of this study was to investigate the bone penetration of these antibiotics during hip and knee arthroplasty, and their efficacy against Staphylococcus aureus and S. epidermidis. Bone samples were collected from 21 patients undergoing total knee arthroplasty (TKA) and 18 patients undergoing total hip replacement (THA). The concentration of both antibiotics was analysed using high performance liquid chromatography. Penetration was expressed as a percentage of venous blood concentration. The efficacy against common infecting organisms was measured using the epidemiological cut-off value for resistance (ECOFF). The bone penetration of gentamicin was higher than flucloxacillin. The concentration of both antibiotics was higher in the acetabulum than the femoral head or neck (p=0.007 flucloxacillin; p=0.021 gentamicin). Flucloxacillin concentrations were effective against S. aureus and S. epidermis in all THAs and 20 (95%) TKAs. Gentamicin concentrations were effective against S.epidermis in all bone samples. Gentamicin was effective against S. aureus in 11 (89%) femoral samples. Effective concentrations of gentamicin against S. aureus were only achieved in 4 (19%) femoral and 6 (29%) tibial samples in TKA. Flucloxacillin and gentamicin was found to effectively penetrate bone during arthroplasty. Gentamicin was effective against S. epidermidis in both THA and TKA, while it was found to be less effective against S. aureus during TKA. Bone penetration of both antibiotics was less in TKA than THA.
Developing titanium (Ti) surfaces that are biocompatible yet serve as deterrents for bacterial attachment and growth are particularly appealing in tackling the ongoing problem of sepsis-induced implant failures. Realising this could include coating Ti with the bioactive lipid, lysophosphatidic acid. Surgical revision for failed total joint replacements costs a staggering £300m/yr and approximately 20% of this burden is attributed to implant failure through bacterial infection. Producing biomaterials that deter microbial attachment as well as securing robust osseointegration continues to be a significant research challenge in contemporary bone biomaterials design. Steps to realising novel improvements are further compounded by the concerns raised over resistance of bacteria to many antimicrobial agents. Clearly this is a major constraint necessitating an entirely novel approach to minimising implant infection risk. We therefore turned our attention to certain lysophosphatidic acids (LPAs) for Ti functionalisation. We have found LPA to enhance calcitriol-induced human osteoblast (hOB) maturation. Of further significance is the discovery that LPA can directly inhibit the growth of certain bacteria and even co-operate with some antibiotics to bring about their demise. Herein we describe the fabrication of a hOB-compatible Ti surface with palmitoyl-LPA (P-LPA) which we also find hinders bacterial attachment.Summary Statement
Introduction
Conventional culture techniques have poor sensitivity for detecting bacteria growing in biofilms, which can result in under-diagnosis of infections. Sonication of biofilm colonised orthopaedic biomaterials can render bacteria in biofilm more culturable, thereby improving diagnosis of orthopaedic implant infections. Prosthetic joint infection (PJI) is a potentially devastating complication in arthroplasty. Biofilm formation is central to PJI offering protection to the contained bacteria against host defence system and antimicrobials. Orthopaedic biomaterials generally have a proclivity to biofilm colonisation. Conventional culture technique has a low sensitivity for detecting bacteria in biofilm. Sonication can disrupt bacteria biofilms aggregations and dislodge them from colonised surfaces, rendering them culturable and consequently improve the diagnosis of otherwise culture-negative PJI. We investigated the effect of ultrasonication on biofilms adherent to poylmethylmethacrylate PMMA cement.Summary Statement
Introduction
It has been reported that some of the local anaesthetic agents possess antimicrobial activity against clinically-significant bacteria. Although bupivacaine exhibits a bacteriostatic effect at concentrations above 0.25% there are concerns that it might interact with some of the other antibiotics administered to patients. Whilst these interactions may be potentially benign, the risk is that they are antagonistic and that local bupivacaine might predispose the patient to a higher risk of infection. Bupivacaine is commonly administered as a local anaesthetic following knee arthroplasy; the purpose of this study was to assess its potential interactions with gentamicin eluting from the cement used to fix the device. A strain of Saphylococcus aureus (29213) with established susceptible Minimal Inhibition Concentration (MIC) and Minimal Bactericidal Concentration (MBC) for gentamicin was used. This organism was inoculated into four types of broth; Mueller-Hinton broth (MH), MH with different concentrations of gentamicin, MH with 0.25% and 0.125% bupivacaine and MH with various combinations of gentamicin and bupivacaine. The broths were incubated at 37C and at 0.5, 1, 2, 3, 6 and 24 hours post inoculation the number of bacteria remaining were counted. From these data kill-curves were generated describing the absolute and individual rates of killing seen with bupivacaine and gentamicin alone and when in combination. Bupivacaine showed a bacteriostatic effect only at concentrations of 0.25% and higher. All concentrations of gentamicin above or equal to the expected MBC showed bactericidal effect. However, in combination with both strengths of Bupivacaine (0.25 and 0.125%) the bacteriocidal effect of gentamicin was seen at a lower concentration and the rate of killing of bacteria was enhanced. Bupivacaine has bacteriostatic effect at concentrations above 0.25% in line with published data. In these experiments we have shown that the use of bupivacaine together with gentamicin does not reduce the bactericidal property of the antibiotic and that the bactericidal effect of gentamicin appears to be enhanced by bupivacaine. This would suggest that the local use of bupivacaine is unlikely to increase the risk of infection in patients undergoing knee arthroplasty and may actually be beneficial.
Prosthetic joint infection(PJI) still remains a concern in orthopaedic practice. Antibiotic-loaded acrylic-cement(ALAC) is a proven means of lowering the incidence of PJI. However, increasing antimicrobial resistance has complicated both prophylaxis and treatment, prompting the use of combination antimicrobial therapy, with the addition of vancomycin to gentamicin-containing ALAC commonly used. The new antimicrobial, daptomycin, has better activity than vancomycin and we studied its elution from ALAC in comparison with vancomycin, along with its impact on the co-elution of gentamicin. Cement beads were prepared from PalacosRG containing, 1g/2g daptomycin, 1g/2g vancomycin and without additional antibiotics. Six replicates of each combination were eluted in PBS at 37oC, at timed intervals, for up to 90days, the antibiotic loss was assessed using validated assays. The mean recovery of gentamicin after 90days was 1.1mg with half eluted within the first 6 hours. Recovery was significantly increased by 60% and 40% with addition of 1g&2g of daptomycin(two-tail t-test: p=0.004 and p=0.02), respectively. Although there was a slight increase in gentamicin recovery in vancomycin loaded samples, this was not statistically significant(p>0.05). The significant increases in gentamicin elution from Palacos RG when supplemented with daptomycin, along with a superior activity, may provide a better synergistic effect than PalacosRG supplemented with vancomycin in the management of PJI.
The aim of this study was to measure intra-articular gentamicin levels at the 2nd stage revision following the use of an antibiotic impregnated articulating spacer. Infected total knee replacements are a cause of considerable morbidity often requiring revision in two stages. Rings of bone cement, cement moulds and spacer devices are available for use following the initial debridement and removal of infected metalwork. The availability of antibiotic impregnated articulating spacers are potentially attractive to achieve a high local dose of antibiotic and to maintain a good range of movement. Seven patients underwent a two stage revision of their total knee replacements. Following the initial debridement an antibiotic impregnated articulating spacer was cemented in place. At the 2nd stage revision a perioperative joint aspirate and blood sample was taken and gentamicin levels measured. The range of movement was assessed. The average gentamicin levels were 0.72mg/l (0.24 – 2.36mg/l). A good range of movement was maintained in all cases. At these levels the gentamicin would be therapeutic. Antibiotic impregnated articulating spacers possess several potential advantages to the revision knee surgeon by helping maintain the range of movement and provide local release of antibiotics. Their use should be considered in such cases.
We determined the effect of the surgical approach on perfusion of the femoral head during hip resurfacing arthroplasty by measuring the concentration of cefuroxime in bone samples from the femoral head. A total of 20 operations were performed through either a transgluteal or an extended posterolateral approach. The concentration of cefuroxime in bone was significantly greater when using the transgluteal approach (mean 15.7 mg/kg; 95% confidence interval 12.3 to 19.1) compared with that using the posterolateral approach (mean 5.6 mg/kg; 95% confidence interval 3.5 to 7.8; p <
0.001). In one patient, who had the operation through a posterolateral approach, cefuroxime was undetectable. Using cefuroxime as an indirect measure of blood flow, the posterolateral approach was found to be associated with a significant reduction in the blood supply to the femoral head during resurfacing arthroplasty compared with the transgluteal approach.