Total knee arthroplasty (TKA) is currently one of the most common elective surgical procedures in the United States. The increase in the proportion of younger patients in receipt of surgery, in concert with a dramatic rise in the incidence of obesity, has contributed to the on-going, exponential increase in the number of arthroplasties performed annually. Despite materials advances for implants, the U.S. revision burden has remained static for the last decade. According to the 2013 CMS MEDPAR file the typical CMS reimbursement falls far short of costs incurred by the hospital, resulting in an average net loss of revenue of $9,539; and over 90% of hospitals lose money for every revision case performed. Today, approximately 5% of all primaries performed will result in an early revision (< 3 years). In order to understand ways with which to mitigate the incidence of early revision due to mechanical complications, a multicentric group of sensor-assisted patients was follow-up out to 3 years. In this study, 278 sensor-assisted patients were followed out to 3 years. The intraoperative devices used in this study contain microsensors and a processing unit. Kinetic and center of load location data are projected, in real-time, to a screen. Because of the wireless nature of the intraoperative sensors, the patella can be reduced, and kinematic data can be evaluated through the range of motion. For each patient, the soft-tissue envelope was balanced to within a mediolateral differential of 15 lbf., through the ROM, as per the suggestion of previously reported literature. The average patient profile indicates: age = 69.7 years, BMI = 30.4, gender distribution = 36% male/64% female. Any adverse event within the 3-year follow-up interval was captured. By 3 years, 1 patient in this population has required revision surgeon due to mechanical complicatons. Overall adverse events included: pain in hip (3), pain in contralateral knee (2), wound drainage (3), DVT (1), death (1), stiffness in operative knee (2), infection (3), global pain (2), back pain (2). Based on the average reported number of early revisions that occur in the U.S. (5% of primaries), it was anticipated for this patient group to require approximately 13 revisions by the 3-year follow-up interval. Using 2013 CMS MEDPAR data, these 13 revisions would have resulted in $124,007 cost-to-hospital. However, only 1 revision (0.4%) was observered, therefore $114,468 in additional costs were spared for the aggregate of participating hospitals. This data suggests that the incorporation of kinetic sensors in TKA may assist the surgeon in achieving soft-tissue balance and thereby avoiding adverse mechanical complications that require surgical intervention.
The rate of technological innovation in procedural total knee arthroplasty has left little time for critical evaluation of a new technology before the adoption of even newer modalities. With more drastic financial restrictions being placed on operating room spending, orthopaedic surgeons are now required to provide excellent results on a budget. It is integral that both clinical efficacy and cost-effectiveness of these intraoperative technologies be fully understood in order to provide patients with effectual, economically conscious care. The purpose of this qualitative analysis of literature was to evaluate clinical and economic efficacy of the three most prominent technologies currently used in TKA: computer navigation, patient-specific instrumentation, and kinetic sensors. Three hundred and ninety one publications were collected; 100 were included in final qualitative analysis. Criteria for inclusion in the analysis was defined only insofar as that each piece assessed one of the above listed aspects of the three technologies Literature included in the final evaluation contained background information on each respective technology, clinical outcomes, revision rates, and/or cost analyses. All comparisons were conducted in a strictly qualitative manner, and no attempts were made to conduct interstudy statistical analyses due to the high level of variability in methodology and data collected.Introduction
Methods