Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 84-B, Issue SUPP_I | Pages - 15
1 Mar 2002
Charrière E Terrazzoni S Pittet C Lemaître J Mordasini P Dutoit M Zysset P
Full Access

Two calcium phosphate cements, brushite and hydroxyapatite, have been recently developed as bone substitution materials. The brushite cement is biocompatible, resorbable, osteoconductive and injectable since it hardens in physiological conditions. In contrast, hydroxyapatite is less resorbable and is not injectable. However, hydroxyapatite presents a higher strength, which may open the perspective of use in weight-bearing regions of the skeleton subjected to multi-axial stresses. The purpose of this work is a full characterization of the multiaxial elastic and failure behaviour of these two cements in a moist environment.

The brushite cement was prepared by mixing three phosphate powders in presence of water. A mixture of monetite and calcite powders in presence of water was used to obtain hydroxyapatite self-setting cement. Cylindrical, hollow specimens (Øext=18mm, Øint=14mm, L=40mm) were manufactured to apply uniaxial and torsional deformations. The specimens were cast with a custom mould, avoiding any machining, and thus, residual stresses. Scanning electron microscopy and x-ray diffraction were used to examine the cement microstructures and to determine their final material phases. An MTS axial-torsional machine was used for all mechanical tests. Compression, tension and torsion tests were performed each on five brushite and five hydroxyapatite specimens under moist conditions. Uniaxial and biaxial extensometers were used to measure the elastic moduli and the Poisson ratio.

The brushite cement exhibited failure properties comparable or below those of average human cancellous bone and confirmed its indication as a bone filling material (Brushite failure strength : 1.3±0.3 MPa in tension, 2.9±0.4 MPa in shear and 10.7±2.0 MPa in compression). The hydroxyapatite cement had an order of magnitude larger compressive strength (75±4.2 MPa), comparable tensile (3.5±0.9 MPa) and shear (4.8±0.3 MPa) strengths as average human cancellous bone. As expected, the latter cement seems to be more compatible with a multiaxial weight-bearing function in bone substitution.