header advert
Results 1 - 1 of 1
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 70 - 70
1 Apr 2017
Günzel E Barnouin L Delépine P Le Pape F
Full Access

Background

Meniscal tears are among the most common knee injuries. To preserve as much as possible the joint, partial and total meniscal replacements are necessary. To combine the biocompatibility and mechanical resistance of meniscus allograft with the disponibility of synthetic substitutes, an acellular, viroinactivated and sterile scaffold with well-preserved structure has been developed based on PHOENIX process.

Methods

Human menisci were collected from living donors undergoing total knee arthroplasty. They underwent chemical treatments, freeze-drying and gamma irradiation. Decellularisation of menisci and preservation of the matrix structure were explored by histological studies. Meniscal scaffold ultrastructure was analysed by scanning electron microscopy. Biomechanical studies were also conducted. Scaffold viroinactivation was investigated by viral clearance studies. Finally, the allografts were cultured for 4 weeks with Mesenchymal Stem Cells (CSM); cells viability and proliferation were assessed histologically and by confocal microscopy following stainings.