This study evaluates the impact of radii-related differences in posterior cruciate ligament retaining (PCR) primary total knee arthroplasty (TKA) prosthetic designs on knee biomechanics during level walking 1-year after surgery. The multi-radius (MR) design creates at least two instantaneous flexion axes by changing the radius of curvature of the femoral component throughout the arc of knee motion. The femoral component of the single-radius (SR) design has only one radius and therefore a fixed axis. Subjects scheduled for computer-navigated TKA (n = 37: SR n = 20 [9M, 11F], MR n = 17 [8M, 9F]; 69.8 ± 7.1 years, 87.6 ± 20.8 kg, 1.68 ± 0.09 m), and demographic-matched controls without knee pathology n = 23 [13M, 10F], provided informed consent under the Banner IRB (Sun Health panel). All surgical subjects received similar pre-, peri-, and post-operative care under the direction of three surgeons from a single orthopedic practice. Position and force data were collected using 28 reflective markers (modified Helen Hayes [Kadaba et al 1990]) tracked by ten digital IR cameras (120 Hz) (Motion Analysis Corp., Santa Rosa, CA) and four force platforms (1200 Hz) (AMTI, Watertown, MA) embedded in an 8m walkway. Data were recorded and smoothed (Butterworth filter, 6 Hz) using EVaRT 5.0.4 software (Motion Analysis Corp.). Gait cycle parameters were calculated using the ‘Functional Hip Center’ and ‘Original Knee Axis’ models in Orthotrak 6.6.1 (Motion Analysis Corp.). Data from each group were height and weight normalized and ensemble averaged by affected limb (right limb for controls) using custom code written in Labview (National Instruments Corp, Austin, TX). Descriptive statistics for the maximum and minimum knee kinematic, kinetic, and temporal spatial values in the stance and swing phases of the gait cycle were generated for each group. Between-group comparisons were made using an ANOVA with post hoc testing as appropriate (SPSS 14.0 (SPSS Inc, Chicago, IL)).Introduction:
Methods:
Minimally invasive, computer navigated techniques are gaining popularity for total knee replacement (TKA). While these techniques may have the potential to provide improved functional outcomes with more rapid recovery, little quantitative data exists comparing long-term gait function following surgery with different exposure approaches. This study compares functional gait differences between surgical approach groups two year following TKA. Kinetics, kinematics, and temporospatial parameters were assessed to determine if differences exist between groups in long term follow-up. This study was approved by the Banner IRB (Sun Health Panel). 95 subjects volunteered to participate in the study and signed informed consent prior to testing. The subjects were prospectively randomized to one of four surgical approach groups, mini-midvastus (MV), mini-subvastus (SV), mini-parapatellar (MP), and standard parapatellar (SP). These subjects were also compared to 45 age-matched, asymptomatic controls. Surgery was performed by one of two fellowship trained orthopedic surgeons specializing in adult reconstruction. Subjects were assessed in the gait laboratory two years after receiving surgery. Three dimensional kinetic and kinematic data were captured using a ten-camera passive marker system, a modified Helen Hayes marker set (Eagle-4, Motion Analysis, Santa Rosa, CA), and four floor embedded force platforms (AMTI Inc., Watertown, MA). Subjects were instructed to walk at a self selected speed down an 8 meter walkway. Kinetic and kinematic data were post processed using EVaRT and OrthoTrak 6.23 biomechanical software (Motion Analysis, Santa Rosa, CA). Statistical analyses were performed using SPSS (v14.0, SPSS Inc, Chicago, IL) and included a one-way ANOVA and post hoc testing.Introduction
Methods
Leg amputation levels were decided in 24 patients suffering from atherosclerosis, using the conventional techniques of segmental blood pressure and radioisotope skin clearance. The skin microcirculation was measured and recorded before operation with a laser doppler flowmeter. A high correlation was found between the successful amputation levels and the maximal blood perfusion of the skin measured in this way.