This paper is the first to compare the results of unicompartmental to total knee arthroplasty revision surgery between cases with explained pain and cases with unexplained pain. Revision surgery for unexplained pain usually results in a less favourable outcome. Although it is suggested in literature that results of UKA to TKA revision surgery improve when the mechanism of failure is understood, a comparative study regarding this topic is lacking.Summary Statement
Introduction
Although it has been suggested that the outcome
after revision of a unicondylar knee replacement (UKR) to total knee
replacement (TKR) is better when the mechanism of failure is understood,
a comparative study on this subject has not been undertaken. A total of 30 patients (30 knees) who underwent revision of their
unsatisfactory UKR to TKR were included in the study: 15 patients
with unexplained pain comprised group A and 15 patients with a defined
cause for pain formed group B. The Oxford knee score (OKS), visual
analogue scale for pain (VAS) and patient satisfaction were assessed before
revision and at one year after revision, and compared between the
groups. The mean OKS improved from 19 (10 to 30) to 25 (11 to 41) in
group A and from 23 (11 to 45) to 38 (20 to 48) in group B. The
mean VAS improved from 7.7 (5 to 10) to 5.4 (1 to 8) in group A
and from 7.4 (2 to 9) to 1.7 (0 to 8) in group B. There was a statistically
significant difference between the mean improvements in each group
for both OKS (p = 0.022) and VAS (p = 0.002). Subgroup analysis
in group A, performed in order to define a patient factor that predicts
outcome of revision surgery in patients with unexplained pain, showed
no pre-operative differences between both subgroups. These results may be used to inform patients about what to expect
from revision surgery, highlighting that revision of UKR to TKR
for unexplained pain generally results in a less favourable outcome
than revision for a known cause of pain. Cite this article:
To investigate the origin of fractures at the distal locking site of the Gamma nail, we loaded ten paired human cadaver femora fixed with a Gamma nail in torsion until they fractured. When an awl was hammered in to start the hole for distal locking a fissure appeared in the lateral cortex of all the femora, and the mean torsional load to create a fracture was reduced by 57.8% compared with that in a control group in which the distal locking hole had been started with a centre drill. When an additional drill hole was made, the mean failure load in torsion decreased by 35.7%. We strongly recommend that an awl should not be used at the distal locking site of the Gamma nail; we recommend the use of a centre drill. Additional drill holes should be avoided because they act as stress raisers.