Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 74 - 74
1 Dec 2022
Changoor A Suderman R Wood B Grynpas M Hurtig M Kuzyk P
Full Access

Large cartilage lesions in younger patients can be treated by fresh osteochondral allograft transplantation, a surgical technique that relies on stable initial fixation and a minimum chondrocyte viability of 70% in the donor tissue to be successful. The Missouri Osteochondral Allograft Preservation System (MOPS) may extend the time when stored osteochondral tissues remain viable. This study aimed to provide an independent evaluation of MOPS storage by evaluating chondrocyte viability, chondrocyte metabolism, and the cartilage extracellular matrix using an ovine model.

Femoral condyles from twelve female Arcott sheep (6 years, 70 ± 15 kg) were assigned to storage times of 0 (control), 14, 28, or 56 days. Sheep were assigned to standard of care [SOC, Lactated Ringer's solution, cefazolin (1 g/L), bacitracin (50,000 U/L), 4°C storage] or MOPS [proprietary media, 22-25°C storage]. Samples underwent weekly media changes. Chondrocyte viability was assessed using Calcein AM/Ethidium Homodimer and reported as percent live cells and viable cell density (VCD). Metabolism was evaluated with the Alamar blue assay and reported as Relative Fluorescent Units (RFU)/mg. Electromechanical properties were measured with the Arthro-BST, a device used to non-destructively compress cartilage and calculate a quantitative parameter (QP) that is inversely proportional to stiffness. Proteoglycan content was quantified using the dimethylmethylene blue assay of digested cartilage and distribution visualized by Safranin-O/Fast Green staining of histological sections. A two-way ANOVA and Tukey's post hoc were performed.

Compared to controls, MOPS samples had fewer live cells (p=0.0002) and lower VCD (p=0.0004) after 56 days of storage, while SOC samples had fewer live cells (p=0.0004, 28 days; p=0.0002, 56 days) and lower VCD (p=0.0002, 28 days; p=0.0001, 56 days) after both 28 and 56 days (Table 1). At 14 days, the percentage of viable cells in SOC samples were statistically the same as controls but VCD was lower (p=0.0197). Cell metabolism in MOPS samples remained the same over the study duration but SOC had lower RFU/mg after 28 (p=0.0005) and 56 (p=0.0001) days in storage compared to controls. These data show that MOPS maintained viability up to 28 days yet metabolism was sustained for 56 days, suggesting that the conditions provided by MOPS storage allowed fewer cells to achieve the same metabolic levels as fresh cartilage. Electromechanical QP measurements revealed no differences between storage methods at any individual time point. QP data could not be used to interpret changes over time because a mix of medial and lateral condyles were used and they have intrinsically different properties. Proteoglycan content in MOPS samples remained the same over time but SOC was significantly lower after 56 days (p=0.0086) compared to controls. Safranin-O/Fast Green showed proteoglycan diminished gradually beginning at the articular surface and progressing towards bone in SOC samples, while MOPS maintained proteoglycan over the study duration (Figure 1).

MOPS exhibited superior viability, metabolic activity and proteoglycan retention compared to SOC, but did not maintain viability for 56 days. Elucidating the effects of prolonged MOPS storage on cartilage properties supports efforts to increase the supply of fresh osteochondral allografts for clinical use.

For any figures or tables, please contact the authors directly.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_3 | Pages 2 - 2
1 Mar 2021
Changoor A Suderman R Alshaygy I Fuhrmann A Akens M Safir O Grynpas M Kuzyk P
Full Access

Patients undergoing revision surgery of a primary total hip arthroplasty often exhibit bone loss and poor bone quality, which make achieving stable fixation and osseointegration challenging. Implant components coated in porous metals are used clinically to improve mechanical stability and encourage bone in-growth. We compared ultra-porous titanium coatings, known commercially as Gription and Porocoat, in an intra-articular model by press-fitting coated cylindrical implants into ovine femoral condyles and evaluating bone in-growth and fixation strength 4, 8 and 16 weeks post-operatively.

Bilateral surgery using a mini-arthrotomy approach was performed on twenty-four Dorset-Rideau Arcott rams (3.4 ± 0.8 years old, 84.8 ± 9.3 kg) with Institutional Animal Care Committee approval in accordance with the Canadian Council on Animal Care. Cylindrical implants, 6.2 mm in diameter by 10 mm in length with surface radius of curvature of 35 mm, were composed of a titanium substrate coated in either Porocoat or Gription and press-fit into 6 mm diameter recipient holes in the weight-bearing regions of the medial (MFC) and lateral (LFC) femoral condyles. Each sheep received 4 implants; two Gription in one stifle (knee) and two Porocoat in the contralateral joint. Biomechanical push-out tests (Instron ElectroPuls E10000) were performed on LFCs, where implants were pushed out relative to the condyle at a rate of 2 mm/min. Force and displacement data were used to calculate force and displacement at failure, stiffness, energy, stress, strain, elastic modulus, and toughness. MFCs were fixed in 70% ethanol, processed undecalcified, and polished sections, approximately 70 µm thick (Exakt Micro Grinding system) were carbon-coated. Backscattered electron images were collected on a scanning electron microscope (Hitachi SU3500) at 5 kV and working distance of 5 mm. Bone in-growth within the porous coating was quantified using software (ImageJ). Statistical comparisons were made using a two-way ANOVA and Fisher's LSD post-hoc test (Statistica v.8).

Biomechanical evaluation of the bone-implant interface revealed that by 16 weeks, Gription-coated implants exhibited higher force (2455±1362 N vs. 1002±1466 N, p=0.046) and stress (12.60±6.99 MPa vs. 5.14±7.53 MPa, p=0.046) at failure, and trended towards higher stiffness (11510±7645 N/mm vs. 5010±8374 N/mm, p=.061) and modulus of elasticity (591±392 MPa vs. 256±431 MPa, p=0.61). Similarly, by 16 weeks, bone in-growth in Gription-coated implants was approximately double that measured in Porocoat (6.73±3.86 % vs. 3.22±1.52 %, p=0.045). No statistically significant differences were detected at either 4 nor 8 weeks, however, qualitative observations of the exposed bone-implant interface, made following push-out testing, showed more bony material consistently adhered to Gription compared to Porocoat at all three time points. High variability is attributed to implant placement, resulting from the small visual window afforded during surgery, unique curvatures of the condyles, and presence of the extensor digitorum longus tendon which limited access to the LFC.

Ultra-porous titanium coatings, know commercially as Gription and Porocoat, were compared for the first time in a challenging intra-articular ovine model. Gription provided superior fixation strength and bone in-growth, suggesting it may be beneficial in hip replacement surgeries where bone stock quality and quantity may be compromised.