Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 86 - 86
1 Sep 2012
Kanekasu K Hisakado H
Full Access

Introduction

Alignment and positioning of implants is important in total knee arthroplasty (TKA). Identifying the femoral hip center (FHC) without fluoroscopy or computer navigation is considered difficult. The Complete Compass system (CoCo) is a femoral extramedullary guidance system designed to identify the FHC. This apparatus provides an accurate representation of the femoral functional axis in the coronal plane without a computer navigation system. We compared postoperative implant alignment of patients undergoing total knee arthroplasty between CoCo and intraoperative computer navigation.

Materials and Methods

Twenty-five consecutive TKAs using CoCo were analyzed. CoCo has a pivotal arm with a pivotal shaft arranged to extend perpendicular to the coronal plane. A marker is attached to the pivotal arm to depict a circular arc on the marking plate with rotation of the pivotal arm. The pivotal shaft is placed at the intercondylar notch of the femur. The distance from the pivotal shaft to the marker is equal to the distance from the intercondylar notch of the femur to the FHC of the patient based on preoperative measurements in the coronal plane. This apparatus has a level of the horizontal plane and the condition of the pivotal shaft is able to match neutral positions in the sagittal and axial planes. The intersection of two arcs drawn by using CoCo with the hip joint in abduction and adduction indicates the FHC position. Postoperative coronal and sagittal views radiographs were obtained. Twenty-five TKAs implanted using computer navigation were also analyzed for postoperative alignment. For two groups, targeted implant position was 90° in both planes for the femoral functional axis.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XL | Pages 85 - 85
1 Sep 2012
Kanekasu K Hisakado H
Full Access

Introduction

Total hip arthroplasty (THA) using the direct anterior approach (DAA) in a supine position is a minimally invasive surgery that reduces postoperative dislocation. Excellent exposure of both the acetabulum and proximal femoral part is important to reduce intraoperative complications. Generally, two surgical assistants need to hold four retractors to maintain excellent exposure of the acetabulum. We examined intra- and postoperative complications as indicators of the efficiency of using the “Magic Tower” (MT) device compared with a non-MT group.

Material and Method

Twenty consecutive DAA THAs using MT were analyzed, and 20 DAA THAs not using MT were also analyzed. MT is a retractor-holding device, and has an arm structure that can be moved in a wide variety of directions. This device holds a retractor stably, and each movement of the arm can be locked by one click. Operating time, blood loss, length of skin incision, intraoperative complications, and number of assistants were recorded. Postoperative radiographs were obtained to evaluate implant position.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXV | Pages 109 - 109
1 Jun 2012
Kanekasu K
Full Access

Kneeling is one of important motion in Asians culture, also there were teachers of tea or flower ceremony who sit seiza routinely. But also, people in the Middle East need deep flexion keeling when they pray. At the symposium with the title of “A Challenge of deep flexion after TKA”, held at the 33rd Annual Meeting of Japanese Society of Reconstructive Arthroplasty in 2003, it was agreed that the definition of post-operative deep flexion to be more than 130 degrees of flexion. Four hundred and seventy two patients treated with a total of 598 consecutive primary total knee arthroplasties were performed and 480 knees were followed for 4.1 to 10.6 years(mean, 7.2 years). Preoperatively, the mean Hospital for Special Surgery knee score was 45.8 points. At the time of latest follow-up, the mean knee score was 88.5 points. The mean preoperative and postoperative ranges of flexion were 116 and 134 degrees, respectively. No knee developed osteolysis, aseptic loosening. A revision operation was performed in 3 knees because of infection. Achieving deep flexion is multi-factorial, such as preoperative planning, surgical procedure, prosthesis design, and postoperative rehabilitation. About surgical tips for deep flexion, posterior positioning of femoral component will increase the femoral posterior offset and decrease the anterior patello-femoral pressure. Through osteophyte removal will increase the posterior clearance and avoid the bone-polyethylene impingement. The flexion gap should be balanced after creating a balanced extension gap, since preparation of the flexion gap affects the extension gap in TKA. Based upon studies of the healthy knee in deep flexion, it was hypothesized that deep flexion would require tibial internal rotation greater than 20 degrees, greater posterior translation of the lateral femoral condyle than the medial condyle, and subluxation of the articular surfaces in terminal flexion. However, as the results of our fluoroscopic analysis of kinematics during deep flexion kneeling after fixed bearing PS TKA, tibial internal rotation increased with greater knee flexion, but there was high variability about the trend line. Patients with deeply flexing fixed bearing PS knee arthroplasty showed two phases of condylar translation with deep flexion. Interestingly, these two-phase translations are dictated by the design of the cam/post mechanism and serve to maintain the condyles within the posterior articular surfaces of the tibia plateau. Surface separation of both medial and lateral condyles was observed in terminal flexion. At least direct edge wear by the femoral condyle in maximum flexion is denied from this phenomenon. However, potential problems of TKA that allows for deep flexion are considerable such as dislocation, polyethylene wear, and anterior knee pain. In TKA using PS type of implant, the risk of insert damage also exists in factors other than deep flexion motion, such as cam/post or notch/post. Surgeons must confirm carefully not to set implants loose, or not to leave remnants of osteophytes during surgery and to pay attention not to raise the activity level of patients too high after surgery.


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 10 | Pages 1327 - 1330
1 Oct 2006
Tokuhara Y Kadoya Y Kanekasu K Kondo M Kobayashi A Takaoka K

The shape of the flexion gap in 20 normal knees was evaluated by axial radiography of the distal femur, and the results compared with those obtained in a previous study by MRI. The observed asymmetry was reduced by 29% using radiography, with a mean value of 3.6° (1.5° to 6.3°) compared with that obtained by MRI of 5.1° (2.6° to 9.5°), a mean discrepancy of 1.49°. The results obtained by radiography and MRI showed a strong correlation (r = 0.78).

Axial radiography is acceptable for the evaluation of the flexion gap and is less expensive and more comfortable to perform than MRI. Additionally, no metallic artefact occurs when the radiological method is used for assessment after arthroplasty.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 96 - 96
1 Mar 2006
Harman M Banks S Kanekasu K Hodge W
Full Access

Introduction: Full flexion is a critical performance requirement for patients with total knee replacement (TKR). Different design strategies, such as the post-and-cam, are used to achieve greater femoral rollback during knee flexion. However, substantial damage to the polyethylene tibial post on some posterior cruciate ligament substituting (PS) TKR designs has led to concerns that femoral camtibial post contact will lead to increased insert micromotion and backside wear in modular PS TKR designs. This study evaluated in vivo knee function and polyethylene wear in patients with posterior cruciate ligament retaining (CR) and PS tibial component designs with a full peripheral rim modular locking mechanism.

Methods: Motion Analysis: Thirty two knees with CR (9 knees) and PS (23 knees) tibial inserts participated in fluoroscopic motion analysis during activities of daily living, including stairrise/descent, treadmill gait and maximum kneeling flexion. The metal tibial components used the same full peripheral rim locking mechanism design with the different modular polyethylene articular surfaces. Tibial-femoral contact locations were determined throughout the full range of motion for all activities.

Retrieval Analysis: Polyethylene tibial inserts were retrieved during autopsy and revision surgery after 1 to 74 months. There were 37 CR inserts and 7 PS inserts of the same designs that were evaluated in the motion study. Backside damage on the inserts was assessed on all retrieved inserts using optical microscopy and the damage area and location was measured using digital image analysis.

Results: A relatively posterior position of the femoral component on the tibia was significantly correlated with greater maximum knee flexion. PS TKR had significantly more posterior femoral position and greater maximum flexion than CR TKR. The mean backside damage area was 38%+10% for PS inserts and 45%+15% for CR inserts. Backside surface damage was concentrated near the inserts’ peripheral rim and was dimpled in appearance, consistent with a cast impression of the textured metal baseplate. Scratches and burnishing was infrequently observed. Inserts with the greatest area of backside damage were in-situ for the longest time period.

Discussion: This fluoroscopy-based motion analysis study showed that knees with PS TKR achieve greater maximum flexion than knees with CR TKR. However, retrieved PS inserts did not have larger backside damage areas and the damage pattern location was consistent for both articular geometries. The observed damage morphology suggests that backside damage resulted from axial compression of the polyethylene insert against the textured baseplate rather than micromotion. Previous mechanical tests of this same modular tibial component design have shown that motion between the polyethylene insert and metal baseplate does not increase even after more than six years of in-vivo function.