Implant-associated infection usually require prolonged treatment or even removal of the implant. Local application of antibiotics is used commonly in orthopaedic and trauma surgery, as it allows reaching higher concentration in the affected compartment, while at the same time reducing systematic side effects. Ceftriaxone release from calcium sulphate has a particularly interesting, near-constant release profile in vitro, making it an interesting drug for clinical application. Purpose of the present study was to investigate the potential cytotoxicity of different ceftriaxone concentrations and their influence on osteogenic differentiation of human pre-osteoblasts. Human pre-osteoblasts were cultured up to 28 days in different ceftriaxone concentrations, ranging between 0 mg/L and 50’000 mg/L. Cytotoxicity was determined quantitatively by measuring lactate dehydrogenase release, metabolic activity, and cell proliferation. Gene expression analysis of bone-specific markers as well as mineralization and protein expression of collagen-I (Col-I) were investigated to assess osteogenic differentiation.Aim
Method
In orthopaedic and trauma surgery, implant-associated infections are increasingly treated with local application of antibiotics, which allows a high local drug concentration to be reached without eliciting systematic adverse effects. While ceftriaxone is a widely used antibiotic agent that has been shown to be effective against musculoskeletal infections, high local concentrations may harm the surrounding tissue. This study investigates the acute and subacute cytotoxicity of increasing ceftriaxone concentrations as well as their influence on the osteogenic differentiation of human bone progenitor cells. Human preosteoblasts were cultured in presence of different concentrations of ceftriaxone for up to 28 days and potential cytotoxic effects, cell death, metabolic activity, cell proliferation, and osteogenic differentiation were studied.Aims
Methods
In recent years, there has been a growing interest, in many fields of medicine, in the use of bone adhesives that are biodegraded to non-toxic products and resorbed after fulfilling their function in contact with living tissue. Biomechanical properties of newly developed bone glue, such as adhesion to bone and elastic modulus were tested in our study. Newly developed injectable biodegradable “self-setting” bone adhesive prepared from inorganic tricalcium phosphate powder and aqueous solution of organic thermogelling polymers was used for ex-vivo fixing fractured pig femur. Ex-vivo biomechanical tests were performed on 45 fresh pig femurs. Control group consist of 10 healthy bones, tested group was created by 35 bones with artificial fractures in diaphysis – oblique (O) and bending wedge (BW) type of fracture. Tested group were divided to following 4 subgroups (sg); sg1 – O fracture (n=15) glued together with 3 different type of bone adhesives, sg2 BW fracture (n=5) glued together with bone adhesive (n=5); sg3 – BW fracture fixed with locking compression plate (LCP), n=5; sg4 – BW fracture fixed with LCP in combination with bone adhesive. Three-point bending force and shear compression tests were performed on linear electrodynamic test instrument (ElectroPuls E10000, Instron). Femurs from sg1, sg2 and sg4 were tested on Micro-CT before and after biomechanical testing.Introduction
Material and methods