header advert
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 6 - 6
1 Aug 2022
Bada E Dwarakanath L Sewell M Mehta J Jones M Spilsbury J McKay G Newton-Ede M Gardner A Marks D
Full Access

Children undergoing posterior spinal fusion (PSF) for neuromuscular and syndromic scoliosis were admitted to the paediatric intensive care (PIC) until about 6 years ago, at which time we created a new unit, a hospital floor-based spinal high-dependency unit-plus (SHDU-plus), in response to frequent bed-shortage cancellations. This study compares postoperative management on PIC with HDU-plus for these non-hospital floor suitable children with syndromic and neuromuscular scoliosis undergoing PSF.

Retrospective review of 100 consecutive children with syndromic and neuromuscular scoliosis undergoing PSF between June 2016 and January 2022. Inclusion criteria were: 1) diagnosis of syndromic or neuromuscular scoliosis, 2) underwent PSF, 3) not suitable for immediate postoperative hospital floor-based care. Exclusion criteria were children with significant cardio-respiratory co-morbidity requiring PIC postoperatively.

55 patients were managed postoperatively on PIC and 45 on SHDU-plus. No significant difference between groups was found with respect to age, weight, ASA grade, preoperative Cobb angles, operative duration, number of levels fused and estimated blood loss. 4 patients in the PIC group and 1 in the SHDU-plus group were readmitted back to PIC or HDU following step-down to the hospital floor. Average length of stay was 2 days on PIC and 1 day on SHDU-plus. Average total length of hospital stay was 16.5 days in the PIC group and 10.5 days in the HDU-plus group. 19 (35%) patients developed complications in the PIC group, compared to 18 (40%) in SHDU-plus. Mean specialist unit charge per day was less on SHDU-plus compared with PIC. There were no bed-shortage cancellations in the SHDU-plus group, compared to 11 in the PIC group.

For children with neuromuscular or syndromic scoliosis undergoing PSF and deemed not suitable for post-operative care on the hospital floor, creation of a SHDU-plus was associated with fewer readmissions back to PIC or HDU, shorter hospital stays, an equivalent complication rate, significant cost-saving and fewer cancellations. Level of Evidence: Therapeutic Level III.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 3 - 3
1 Aug 2022
Tailor P Sewell M Jones M Spilsbury J Marks D Gardner A Mehta J
Full Access

The lordosis distribution index (LDI) describes distribution of lumbar lordosis, measured as the % of lower lumbar lordosis (L4-S1) compared to global lordosis (L1-S1) with normal value 50–50%. Maldistributed LDI is associated with higher revision in short lumbar fusions, 4 vertebrae1. We hypothesise maldistributed LDI is also associated with mechanical failure in longer fusions.

Retrospective review of 29 consecutive ASD patients, aged 55+, undergoing long lumbar fusion, 4 levels, with >3-years follow-up. LDI, pelvic incidence (PI) and sagittal vertical axis (SVA) were measured on pre- and post-op whole spine standing X-rays (Fig A and B). Patients were categorized according to their pelvic incidence (PI) and postoperative LDI: Normal (LDI 50 80), Hypolordotic (LDI < 50), or Hyperlordotic (LDI > 80) and assessed for failure rate compared to normal LDI and PI <60.

Mean follow-up 4.5 years. 19 patients had mechanical failures including junctional failure and metalware fracture. PI >60o was associated with higher mechanical failure rates (Chi^2 p<0.05). Hypolordotic LDI was associated with 82% mechanical failure (Chi^2 p<0.001), Hyperlordotic 88% mechanical failure (Chi^2 p<0.001) and Normal 8% mechanical failure (Table 1).

Maldistributed LDI, whether Hyperlordotic or Hypolordotic, correlated with 10× greater mechanical failure rate compared to Normal LDI in long fusions. LDI is a useful measurement that should be considered, especially in high PI patients.


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 257 - 264
1 Feb 2022
Tahir M Mehta D Sandhu C Jones M Gardner A Mehta JS

Aims

The aim of this study was to compare the clinical and radiological outcomes of patients with early-onset scoliosis (EOS), who had undergone spinal fusion after distraction-based spinal growth modulation using either traditional growing rods (TGRs) or magnetically controlled growing rods (MCGRs).

Methods

We undertook a retrospective review of skeletally mature patients who had undergone fusion for an EOS, which had been previously treated using either TGRs or MCGRs. Measured outcomes included sequential coronal T1 to S1 height and major curve (Cobb) angle on plain radiographs and any complications requiring unplanned surgery before final fusion.


Bone & Joint Open
Vol. 2, Issue 3 | Pages 198 - 201
1 Mar 2021
Habeebullah A Rajgor HD Gardner A Jones M

Aims

The British Spine Registry (BSR) was introduced in May 2012 to be used as a web-based database for spinal surgeries carried out across the UK. Use of this database has been encouraged but not compulsory, which has led to a variable level of engagement in the UK. In 2019 NHS England and NHS Improvement introduced a new Best Practice Tariff (BPT) to encourage input of spinal surgical data on the BSR. The aim of our study was to assess the impact of the spinal BPT on compliance with the recording of surgical data on the BSR.

Methods

A retrospective review of data was performed at a tertiary spinal centre between 2018 to 2020. Data were collated from electronic patient records, theatre operating lists, and trust-specific BSR data. Information from the BSR included operative procedures (mandatory), patient consent, email addresses, and demographic details. We also identified Healthcare Resource Groups (HRGs) which qualified for BPT.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_6 | Pages 23 - 23
1 Feb 2016
Jones M Morris A Pope A Ayer R Breen A
Full Access

Purpose and Background:

The spread of upright MRi scanning is a relatively new development in the UK. However, there is a lack of information about whether weight bearing scans confer any additional useful information for low back conditions.

Methods and Results:

Forty-five patient referrals to the upright MRI Department at the AECC for weight bearing lumbar spine scans between November 1st 2014 and June 30th 2015, and the resulting radiologists' reports were reviewed. Age, gender, clinical history, summary of findings, type of weight bearing scanning performed (sitting, standing, flexion, extension) were abstracted. All patients were scanned in a 0.5T Paramed MRopen scanner and all also received supine lumbar spine sagittal and axial scans.

The patients comprised 18 females and 27 males, mean age 52 years, (SD 15.5). Thirty had leg pain, 6 of which was bilateral. In 15, a stenotic lesion was suspected. Other reasons for referral were; possible malignancy (1), effects of degenerative change (4), spondylolisthesis (2), fracture, (1), previous surgery (3), trauma (1), sacroiliitis (1) and instability (3).

In 12/45 cases, reportable findings were more prominent, and sometimes only identifiable, on weight bearing scans, while in a further 4, the reverse was true. All but one of these involved disruption of the spinal or root canals. Eight of them also involved positional alignment.