Advertisement for orthosearch.org.uk
Results 1 - 20 of 94
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 33 - 33
7 Aug 2024
Williams R Evans S Maitre CL Jones A
Full Access

Background

It has become increasingly important to conduct studies assessing clinical outcomes, reoperation rates, and revision rates to better define the indications and efficacy of lumbar spinal procedures and its association with symptomatic adjacent segment degeneration (sASD). Adjacent segment degeneration (ASD) is defined as the radiographic change in the intervertebral discs adjacent to the surgically treated spinal level. SASD represents adjacent segment degeneration which causes pain or numbness due to post-operative spinal instability or nerve compression at the same level. The most common reason for early reoperation and late operation is sASD, therefore is in our best interest to understand the causes of ASD and make steps to limit the occurrence.

Method

A comprehensive literature search was performed selecting Randomized controlled trials (RCTs) and retrospective or prospective studies published up to December 2023. Meta-analysis was performed on 38 studies that met the inclusion criteria and included data of clinical outcomes of patients who had degenerative disc disease, disc herniation, radiculopathy, and spondylolisthesis and underwent lumbar fusion or motion-preservation device surgery; and reported on the prevalence of ASD, sASD, reoperation rate, visual analogue score (VAS), and Oswestry disability index (ODI) improvement.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 69 - 69
17 Apr 2023
Day G Jones A Mengoni M Wilcox R
Full Access

Autologous osteochondral grafting has demonstrated positive outcomes for treating articular cartilage defects by replacing the damaged region with a cylindrical graft consisting of bone with a layer of cartilage, taken from a non-loadbearing region of the knee. Despite positive clinical use, factors that cause graft subsidence or poor integration are relatively unknown. The aim of this study was to develop finite element (FE) models of osteochondral grafts within a tibiofemoral joint and to investigate parameters affecting osteochondral graft stability.

Initial experimental tests on cadaveric femurs were performed to calibrate the bone properties and graft-bone frictional forces for use in corresponding FE models, generated from µCT scan data. The effects of cartilage defects and osteochondral graft repair were measured by examining contact pressure changes using in vitro tests on a single cadaveric human tibiofemoral joint. Six defects were created in the femoral condyles which were subsequently treated with osteochondral autografts or metal pins. Matching µCT scan-based FE models were created, and the contact patches were compared. Sensitivity to graft bone properties was investigated.

The bone material properties and graft-bone frictional forces were successfully calibrated from the initial tests with good resulting levels of agreement (CCC=0.87). The tibiofemoral joint experiment provided a range of cases to model. These cases were well captured experimentally and represented accurately in the FE models. Graft properties relative to host bone had large effects on immediate graft stability despite limited changes to resultant cartilage contact pressure.

Model confidence was built through extensive validation and sensitivity testing, and demonstrated that specimen-specific properties were required to accurately represent graft behaviour. The results indicate that graft bone properties affect the immediate stability, which is important for the selection of allografts and design of future synthetic grafts.

Acknowledgements

Supported by the EPSRC-EP/P001076.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 59 - 59
17 Apr 2023
Pounds G Liu A Jones A Jennings L
Full Access

The aim of this work was to develop a novel, accessible and low-cost method, which is sufficient to measure changes in meniscal position in a whole-knee joint model performing dynamic motion in a knee simulator.

An optical tracking method using motion markers, MATLAB (MATLAB, The MathWorks Inc.) and a miniature camera system (Raspberry Pi, UK) was developed. Method feasibility was assessed on porcine whole joint knee samples (n = 4) dissected and cemented to be used in the simulator (1). Markers were placed on three regions (medial, posterior, anterior) of the medial meniscus with corresponding reference markers on the tibial plateau, so the relative meniscal position could be calculated. The Leeds high kinematics gait profile scaled to the parameters of a pig (1, 2) was driven in displacement control at 0.5 Hz. Videos were recorded at cycle-3 and cycle-50. Conditions tested were the capsule retained (intact), capsule removed and a medial posterior root tear. Mean relative displacement values were taken at time-points relating to the peaks of the axial force and flexion-extension gait inputs, as well as the range between the maximum and minimum values. A one-way ANOVA followed by Tukey post hoc analysis were used to assess differences (p = 0.05).

The method was able to measure relative meniscal displacement for all three meniscal regions. The medial region showed the greatest difference between the conditions. A significant increase (p < 0.05) for the root tear condition was found at 0.28s and 0.90s (axial load peaks) during cycle-3. Mean relative displacement for the root tear condition decreased by 0.29 mm between cycle-3 and cycle-50 at the 0.28s time-point. No statistically significant differences were found when ranges were compared at cycle-3 and cycle-50.

The method was sensitive to measure a substantial difference in medial-lateral relative displacement between an intact and a torn state. Meniscus extrusion was detected for the root tear condition throughout test duration. Further work will progress onto human specimens and apply an intervention condition.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 35 - 35
17 Apr 2023
Afzal T Jones A Williams S
Full Access

Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint.

Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab).

The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point.

Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner.

This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 57 - 57
11 Apr 2023
Etchels L Wang L Thompson J Wilcox R Jones A
Full Access

Variations in component positioning of total hip replacements can lead to edge loading of the liner, and potentially affect device longevity. These effects are evaluated using ISO 14242:4 edge loading test results in a dynamic system. Mediolateral translation of one of the components during testing is caused by a compressed spring, and therefore the kinematics will depend on the spring stiffness and damping coefficient, and the mass of the translating component and fixture. This study aims to describe the sensitivity of the liner plastic strain to these variables, to better understand how tests using different simulator designs might produce different amounts of liner rim deformation.

A dynamic explicit deformable finite element model with 36mm Pinnacle metal-on-polyethylene bearing geometry (DePuy Synthes, Leeds, UK) was used with material properties for conventional UHMWPE. Setup was 65° clinical inclination, 4mm mismatch, 70N swing phase load, and 100N/mm spring. Fixture mass was varied from 0.5-5kg, spring damping coefficient was varied from 0-2Ns/mm. They were changed independently, and in combination.

Maximum separation values were relatively insensitive to changes in the mass, damping coefficient, or both. The sensitivity of peak plastic strain, to this range of inputs, was similar to changing the swing phase load from 70N to approximately 150N – 200N. Increasing the fixture mass and/or damping coefficient increased the peak plastic strain, with values from 0.15-0.19.

Liner plastic deformation was sensitive to the spring damping and fixture mass, which may explain some of the differences in fatigue and deformation results in UHMWPE liners tested on different machines or with modified fixtures. These values should be described when reporting the results of ISO14242:4 testing.

Acknowledgements

Funded by EPSRC grant EP/N02480X/1; CAD supplied by DePuy Synthes.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_10 | Pages 5 - 5
1 Aug 2021
Thompson J Corbett J Bye D Jones A Tissingh E Nolan J
Full Access

The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems.

A systematic literature search was performed adhering to PRISMA criteria. In parallel we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003– June 2020.

There are 25 reported cases of such prosthetic fractures confined to small case series and case reports within the literature. We report an additional 19 cases to the literature (mean age 66.3 ± 11.7 years; 12 female [63%]; body mass index 32.9 ± 5.9 kg/m2). The mean time from index procedure to fracture was 7.8 years (2.5–16.3, ±3.6). Exeter V40 stem fracture incidence was 0.27%. Incidence was significantly higher in 125 mm length stems compared to ≥150 mm length stems (1.26% vs 0.13%, respectively, p <0.001) and revision arthroplasty (1.209% vs 0.149%, p <0.001). When comparing different stem length cohorts, 125-mm short-stem were associated with stem body fractures (92% vs 29%, p = 0.0095), earlier time to fracture (6.2 vs 11.0 years, p = 0.0018), younger patient age at time of fracture (62.7 vs 72.6 years old, p = 0.037) and female sex (75% vs 43%, p = 0.33).

This case series in conjunction with the systematic review provides evidence stem morphology plays a role in femoral implant fracture. This complication remains rare, although we report a significantly higher incidence at up to 17 years follow-up than in the literature. As femoral geometries remain the same, increasing BMIs in THR patients should raise concern. Short 125 mm length Exeter V40 stems undoubtedly have a role in restoring anatomy and biomechanics in smaller femoral geometries, although the surgeon has to appreciate the higher risk of stem fracture and the associated predisposing factors which may necessitate meticulous surgical technique and planning.


Bone & Joint Open
Vol. 2, Issue 6 | Pages 443 - 456
28 Jun 2021
Thompson JW Corbett J Bye D Jones A Tissingh EK Nolan J

Aims

The Exeter V40 cemented polished tapered stem system has demonstrated excellent long-term outcomes. This paper presents a systematic review of the existing literature and reports on a large case series comparing implant fractures between the Exeter V40 series; 125 mm and conventional length stem systems.

Methods

A systematic literature search was performed adhering to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. In parallel, we performed a retrospective single centre study of Exeter V40 femoral stem prosthetic fractures between April 2003 and June 2020.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 42 - 42
1 Mar 2021
Williams S Jones A Wilcox R Isaac G Traynor A Board T Williams S
Full Access

Abstract

Objectives

Impingement in total hip replacements (THRs), including bone-on-bone impingement, can lead to complications such as dislocation and loosening. The aim of this study was to investigate how the location of the anterior inferior iliac spine (AIIS) affected the range of motion before impingement.

Methods

A cohort of 25 CT scans (50 hips) were assessed and nine hips were selected with a range of AIIS locations relative to the hip joint centre. The selected CT Scans were converted to solid models (ScanIP) and THR components (DePuy Synthes) were virtually implanted (Solidworks). Flexion angles of 100⁰, 110⁰, and 120⁰ were applied to the femur, each followed by internal rotation to the point of impingement. The lateral, superior and anterior extent of the AIIS from the Centre of Rotation (CoR) of the hip was measured and its effect on the range of motion was recorded.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_2 | Pages 38 - 38
1 Mar 2021
Vasiljeva K Lunn D Chapman G Redmond A Wang L Thompson J Williams S Wilcox R Jones A
Full Access

Abstract

Objectives

The importance of cup position on the performance of total hip replacements (THR) has been demonstrated in in vitro hip simulator tests and clinically. However, how cup position changes during gait has not been considered and may affect failure scenarios. The aim of this study was to assess dynamic cup version using gait data.

Methods

Pelvic movement data for walking for 39 unilateral THR patients was acquired (Leeds Biomedical Research Centre). Patient's elected walking speed was used to group patients into high- and low-functioning (mean speed, 1.36(SD 0.09)ms−1 and 0.85(SD 0.08)ms−1 respectively). A computational algorithm (Python3.7) was developed to calculate cup version during gait cycle. Inputs were pelvic angles and initial cup orientation (assumed to be 45° inclination and 7° version, anterior pelvic plane was parallel to radiological frontal plane). Outputs were cup version angles during a gait cycle (101 measurements/cycle). Minimum, maximum and average cup version during gait cycle were measured for each patient. Two-sample t-test (p=0.05) was used to compare groups.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 48 - 48
1 Apr 2019
Etchels L Wang L Al-Hajjar M Williams S Thompson J Fisher J Wilcox R Jones A
Full Access

INTRODUCTION

There is great potential for the use of computational tools within the design and test cycle for joint replacement devices.

The increasing need for stratified treatments that are more relevant to specific patients, and implant testing under more realistic, less idealised, conditions, will progressively increase the pre-clinical experimental testing work load. If the outcomes of experimental tests can be predicted using low cost computational tools, then these tools can be embedded early in the design cycle, e.g. benchmarking various design concepts, optimising component geometrical features and virtually predicting factors affecting the implant performance. Rapid, predictive tools could also allow population-stratified scenario testing at an early design stage, resulting in devices which are better suited to a patient-specific approach to treatment.

The aim of the current study was to demonstrate the ability of a rapid computational analysis tool to predict the behaviour of a total hip replacement (THR) device, specifically the risk of edge loading due to separation under experimental conditions.

METHODS

A series of models of a 36mm BIOLOX® Delta THR bearing (DePuy Synthes, Leeds, UK) were generated to match an experimental simulator study which included a mediolateral spring to cause lateral head separation due to a simulated mediolateral component misalignment of 4mm. A static, rigid, frictionless model was implemented in Python (PyEL, runtime: ∼1m), and results were compared against 1) a critically damped dynamic, rigid, FE model (runtime: ∼10h), 2) a critically damped dynamic, rigid, FE model with friction (µ = 0.05) (runtime: ∼10h), and 3) kinematic experimental test data from a hip simulator (ProSim EM13) under matching settings (runtime: ∼6h). Outputs recorded were the variation of mediolateral separation and force with time.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 76 - 76
1 Apr 2019
Vasiljeva K Al-Hajjar M Lunn D Chapman G Redmond A Flatters I Thompson J Jones A
Full Access

Introduction

One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect.

Methods

Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin force plates (AMTI) and using a CAST marker set. All patients had good surgical outcomes, confirmed by patient-reported outcomes and were considered well-functioning, based on elective walking speed. Joint contact forces and pelvic motions were obtained from the AnyBody modelling system (AnyBody Technologies, DK). Only gait cycle regions with available force plate data were considered. A finite element model of a 32mm head on a featureless hemispherical polyethylene cup, 0.5mm radial clearance, was used to obtain the contact area from the contact force. A bespoke computational tool was used to analyse patients' gait profiles with and without pelvic motions. The risk of edge contact was measured as a “centre proximity angle” between the cup pole and centre of the contact area, and “edge proximity angle” between the cup pole and the furthest contact area point away from the pole. Pelvic tilt, drop and internal-external rotation were considered one at a time and in combinations.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 29 - 29
1 Jan 2019
Yao J Mengoni M Williams S Jones A
Full Access

Acetabular tissue damage is implicated in osteoarthritis (OA) and investigation of in situ acetabular soft tissues behaviour will improve understanding of tissue properties and interconnections. The study aim was to visualise acetabular soft tissues under load and to quantify displacements using computed tomography (CT) scans (XtremeCT, Scano Medical).

A CT scan (resolution 82 μm) was performed on the disarticulated, unloaded porcine acetabulum. The femoral head was soaked in Sodium Iodide (NaI) solution and cling film wrapped to prevent transfer to the acetabular side. The joint was realigned, compressed using cable ties and re-scanned. The two images were down-sampled to 0.3 mm. Acetabular bone and soft tissues were segmented. Bony features were used to register the two background images, using Simpleware ScanIP 7.0 (Synopsys), to the same position and orientation (volume difference < 5%). Acetabular soft tissues displacements were measured by tracking the same points at the tissue edges on the two acetabular masks, along with difference in bone position as an additional error assessment.

The use of radiopaque solution provided a clear contrast allowing separation of the femoral and acetabular soft tissues in the loaded image. The image registration process resulted in a difference in bone position in the areas of interest equivalent to image resolution (0.3 mm, a mean of 3 repeats by same user). A labral tip displacement of 1.7 mm and a cartilage thickness change from 1.5 mm unloaded to 0.9 mm loaded, were recorded.

The combination of contrast enhancement, registration and focused local measurement was precise enough to reduce bone alignment error to that of image resolution and reveal local soft tissue displacements. These measurement methods can be used to develop models of soft tissues properties and behaviour, and therapy for hip tissue damage at early stage may be reviewed and optimised.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_5 | Pages 18 - 18
1 Apr 2018
Preutenborbeck M Holub O Anderson J Jones A Hall R Williams S
Full Access

Introduction

Up to 60% of total hip arthroplasties (THA) in Asian populations arise from avascular necrosis (AVN), a bone disease that can lead to femoral head collapse. Current diagnostic methods to classify AVN have poor reproducibility and are not reliable in assessing the fracture risk. Femoral heads with an immediate fracture risk should be treated with a THA, conservative treatments are only successful in some cases and cause unnecessary patient suffering if used inappropriately. There is potential to improve the assessment of the fracture risk by using a combination of density-calibrated computed tomographic (QCT) imaging and engineering beam theory. The aim of this study was to validate the novel fracture prediction method against in-vitro compression tests on a series of six human femur specimens.

Methods

Six femoral heads from six subjects were tested, a subset (n=3) included a hole drilled into the subchondral area of the femoral head via the femoral neck (University of Leeds, ethical approval MEEC13-002). The simulated lesions provided a method to validate the fracture prediction model with respect of AVN.

The femoral heads were then modelled by a beam loaded with a single joint contact load. Material properties were assigned to the beam model from QCT-scans by using a density-modulus relationship. The maximum joint loading at which each bone cross-section was likely to fracture was calculated using a strain based failure criterion.

Based on the predicted fracture loads, all six femoral heads (validation set) were classified into two groups, high fracture risk and low fracture risk (Figure 1). Beam theory did not allow for an accurate fracture load to be found because of the geometry of the femoral head. Therefore the predicted fracture loads of each of the six femoral heads was compared to the mean fracture load from twelve previously analysed human femoral heads (reference set) without lesions.

The six cemented femurs were compression tested until failure. The subjects with a higher fracture risk were identified using both the experimental and beam tool outputs.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 53 - 53
1 Apr 2018
Cooper R Williams S Mengoni M Jones A
Full Access

Introduction

Geometric variations of the hip joint can give rise to repeated abnormal contact between the femur and acetabular rim, resulting in cartilage and labrum damage. Population-based geometric parameterisation can facilitate the flexible and automated in silico generation of a range of clinically relevant hip geometries, allowing the position and size of cams to be defined precisely in three dimensions. This is advantageous compared to alpha angles, which are unreliable for stratifying populations by cam type. Alpha angles provide an indication of cam size in a single two-dimensional view, and high alpha angles have been observed in asymptomatic individuals.

Parametric geometries can be developed into finite element models to assess the potential effects of morphological variations in bone on soft tissue strains. The aim of this study was to demonstrate the capabilities of our parameterisation research tool by assessing impingement severity resulting from a range of parametrically varied femoral and acetabular geometries.

Methods

Custom made MATLAB (MathWorks) and Python codes[1] were used to generate bone surfaces, which were developed into finite element models in Abaqus (SIMULIA). Parametric femoral surfaces were defined by a spherical proximal head and ellipse sections through the neck/cam region. This method produced surfaces that were well fitted to bone geometry segmented from CT scans of cam patients and capable of producing trends in results similar to those found using segmented models. A simplified spherical geometry, including the labrum and acetabular cartilage, represented the acetabulum.

Femoral parameters were adjusted to define relevant variations in cam size and position. Two radii (small and large cams) and two positions (anterior and superior cams) were defined resulting in four models. Alpha angles of these parametric femurs were measured in an anterior-posterior view and a cross-table lateral view using ImageJ (NIH). A further model was developed using a femur with a medium cam size and position, and the level of acetabular coverage and labrum length were varied.

Bones were modelled as rigid bodies and soft tissues were modelled as transversely isotropic linearly elastic materials. With the acetabulum fully constrained in all cases, the femurs were constrained in translation and rotated to simulate flexion followed by internal rotation to cause impingement against the labrum.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_2 | Pages 7 - 7
1 Feb 2018
Jess M Ryan C Hamilton S Wellburn S Greenough C Ferguson D Coxon A Fatoye F Dickson J Jones A Atkinson G Martin D
Full Access

Aims

To investigate whether the duration of pain has an influence on the clinical outcomes of patients with low back pain (LBP) managed through the North East of England Regional Back Pain and Radicular Pain Pathway (NERBPP).

Patients and Methods

The NERBPP is a clinical pathway based upon NICE guidelines (2009) for LBP. Patients with LBP referred onto the NERBPP by their General Practitioner (GP) between May 2015 and January 2017 were included in this evaluation. Data from 635 patients, who provided pre and post data for pain (Numerical rating scale [NRS]), function (Oswestry Disability Index [ODI]) and quality-of-life (EuroQol [EQ5D]), were analysed using a series of covariate adjusted models in SPSS. Patients were categorised into four groups based upon pain duration: <3months, ≥3 to <6months, ≥6months to <12months, ≥12months.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_17 | Pages 8 - 8
1 Nov 2017
Patel M Aujla R Jones A Bhatia M
Full Access

Background

Conservative treatment of acute AT ruptures with functional rehabilitation has demonstrated superior results with equal reported re-rupture rates but without the added complications of surgical treatment.

There is no consensus on the duration and method of treatment using functional rehabilitation regimes.

The purpose of this paper is to define our treatment regime, the Leicester Achilles Management Protocol (LAMP), supported with patient reported outcomes and objective measures of assessment.

Methods

All patients with an acute achilles tendon rupture were treated with the same non-operative LAMP functional rehabilitation regime in a VACOped boot for 8 weeks. 12 months post rupture ATRS scores and objective measures of calf muscle girth and heel raise height were obtained and analysed. Venous thromboembolic rates and rates of re-rupture were recorded.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 23 - 23
1 May 2017
Jordan R Jones A Malik S
Full Access

Introduction

The stability of the elbow joint following an acute elbow dislocation is dependent on associated injuries. The ability to identify these concomitant injuries correctly directs management and improves the chances of a successful outcome. Interpretation of plain radiographs in the presence of either a dislocation or post-reduction films with plaster in-situ is difficult. This study aimed to assess the ability of orthopaedic registrars to accurately identify associated bony injuries on initial plain radiographs using CT as the gold standard for comparison.

Methods

Patients over the age of 16 years undergoing an elbow CT scan within one week of a documented elbow dislocation between 1st June 2010 and 1st June 2014 were included in the study. Three orthopaedic registrars independently reviewed both the initial dislocation and immediate post reduction plain radiographs to identify any associated bony injuries. This radiograph review was repeated by each registrar after two weeks. The incidence of associated injuries as well as the inter- and intra-observer variability was calculated.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 21 - 21
1 Feb 2017
Hua X Wilcox R Fisher J Jones A
Full Access

INTRODUCTION

Mal-positioning of the acetabular component in total hip replacement (THR) could lead to edge loading, accelerated component wear, impingement and dislocation [1,2]. In order to achieve a successful position for the acetabular component, the assessment of the acetabular orientation with reference to different coordinate systems is important [3]. The aims of the present study were to establish a pelvic coordinate system and a global body coordinate system, and to assess the acetabular orientations of natural hips with reference to the two coordinate systems.

METHODS

Three-dimensional (3D) computed tomographic (CT) images of 56 subjects (28 males and 28 females) lying supine were obtained from a public image archive (Cancer Image Archive, website: www.cancerimagingarchive.net). 3D solid models of pelvis and spine were generated from the CT images. Two coordinate systems, pelvic and global body coordinate systems, were established. The pelvic coordinate system was established based on four bony landmarks on the pelvis: the bilateral anterior superior iliac spines (RASIS and LASIS) and the bilateral pubic tubercles (RPT and LPT). The global body coordinate system was generated based on the bony landmarks on the spine: the geometric centers of five lumbar vertebrae bodies and the most dorsal points of five corresponding spinous processes, as well as the anterior sacral promontory (Fig 1a and 1b). The acetabular rim plane was obtained by fitting a set of point along the acetabular rim to a plane using least squares method. The acetabular orientation was defined as the three coordinate components (x-, y- and z- components) of the unit normal vector of the acetabular rim plane in the two coordinate systems (Fig. 1c).


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_4 | Pages 31 - 31
1 Feb 2017
Jahani F Fisher J Barton D Brooks J Wilcox R Jones A
Full Access

Introduction

The performance of total hip replacement (THR) devices can be affected by the quality of the tissues surrounding the joint or the mismatch of the component centres during hip replacement surgery. Experimental studies have shown that these factors can cause the separation of the two components during walking cycle (dynamic separation) and the contact of the femoral head with the rim of the acetabular liner (edge loading), which can lead to increased wear and shortened implant lifespan1. There is a need for flexible pre-clinical testing tools which allow THR devices to be assessed under these adverse conditions. In this work, a novel dynamic finite element model was developed that is able to generate dynamic separation as it occurs during the gait cycle. In addition, the ability to interrogate contact mechanics and material strain under separation conditions provides a unique means of assessing the severity of edge loading. This study demonstrates these model capabilities for a range of simulated surgical translational mismatch values, for ceramic-on-polyethylene implants.

Methodology

The components of the THR were aligned and constrained as illustrated in Figure 1. CAD models of commercially available implant geometries were used (DePuy Synthes, Leeds, UK) modified for model simplicity by removing anti-rotation features.

The polyethylene cup liner was given elastic-plastic behaviour. An axial load following the Paul cycle pattern (5 repetitive cycles) with maximum of 3KN and swing phase load of 0.3KN, was applied through the cup holder. The effect of translational mismatch was implemented by using a spring element connected to the cup unit on the lateral side. The spring was compressed by a fixed amount to replicate a degree of medial-lateral mismatch of the components. The instantaneous resultant force vector dictated the dynamic sliding behaviour of the cup against the head. In this study, translational medial-lateral mismatch values of 1, 2, 3 and 4mm were used and the medial-lateral dynamic separation, contact pressure maps and plastic strain were recorded.


The Bone & Joint Journal
Vol. 99-B, Issue 2 | Pages 171 - 174
1 Feb 2017
Tissingh EK Sudlow A Jones A Nolan JF

Aims

The importance of accurate identification and reporting of surgical site infection (SSI) is well recognised but poorly defined. Public Health England (PHE) mandated collection of orthopaedic SSI data in 2004. Data submission is required in one of four categories (hip prosthesis, knee prosthesis, repair of neck of femur, reduction of long bone fracture) for one quarter per year. Trusts are encouraged to carry out post-discharge surveillance but this is not mandatory. Recent papers in the orthopaedic literature have highlighted the importance of SSI surveillance and the heterogeneity of surveillance methods. However, details of current orthopaedic SSI surveillance practice has not been described or quantified.

Patients and Methods

All 147 NHS trusts in England were audited using a structured questionnaire. Data was collected in the following categories: data collection; data submission to PHE; definitions used; resource constraints; post-discharge surveillance and SSI rates in the four PHE categories. The response rate was 87.7%.