Knowledge of the premorbid glenoid shape and the morphological changes the bone undergoes in patients with glenohumeral arthritis can improve surgical outcomes in total and reverse shoulder arthroplasty. Several studies have previously used scapular statistical shape models (SSMs) to predict premorbid glenoid shape and evaluate glenoid erosion properties. However, current literature suggests no studies have used scapular SSMs to examine the changes in glenoid surface area in patients with glenohumeral arthritis. Therefore, the purpose of this study was to compare the glenoid articular surface area between pathologic glenoid cavities from patients with glenohumeral arthritis and their predicted premorbid shape using a scapular SSM. Furthermore, this study compared pathologic glenoid surface area with that from virtually eroded glenoid models created without influence from internal bone remodelling activity and osteophyte formation. It was hypothesized that the pathologic glenoid cavities would exhibit the greatest glenoid surface area despite the eroded nature of the glenoid and the medialization, which in a vault shape, should logically result in less surface area. Computer tomography (CT) scans from 20 patients exhibiting type A2 glenoid erosion according to the Walch classification [Walch et al., 1999] were obtained. A scapular SSM was used to predict the premorbid glenoid shape for each scapula. The scapula and humerus from each patient were automatically segmented and exported as 3D object files along with the scapular SSM from a pre-operative planning software. Each scapula and a copy of its corresponding SSM were aligned using the coracoid, lateral edge of the acromion, inferior glenoid tubercule, scapular notch, and the trigonum spinae. Points were then digitized on both the pathologic humeral and glenoid surfaces and were used in an iterative closest point (ICP) algorithm in MATLAB (MathWorks, Natick, MA, USA) to align the humerus with the glenoid surface. A Boolean subtraction was then performed between the scapular SSM and the humerus to create a virtual erosion in the scapular SSM that matched the erosion orientation of the pathologic glenoid. This led to the development of three distinct glenoid models for each patient: premorbid, pathologic, and virtually eroded (Fig. 1). The glenoid surface area from each model was then determined using 3-Matic (Materialise, Leuven, Belgium). Figure 1. (A) Premorbid glenoid model, (B) pathologic glenoid model, and (C) virtually eroded glenoid model. The average glenoid surface area for the pathologic scapular models was 70% greater compared to the premorbid glenoid models (P < 0 .001). Furthermore, the surface area of the virtual glenoid erosions was 6.4% lower on average compared to the premorbid glenoid surface area (P=0.361). The larger surface area values observed in the pathologic glenoid cavities suggests that sufficient bone remodelling exists at the periphery of the glenoid bone in patients exhibiting A2 type glenohumeral arthritis. This is further supported by the large difference in glenoid surface area between the pathologic and virtually eroded glenoid cavities as the virtually eroded models only considered humeral anatomy when creating the erosion. For any figures or tables, please contact the authors directly.
Patients receiving reverse total shoulder arthroplasty (RTSA) often have osseous erosions because of glenohumeral arthritis, leading to increased surgical complexity. Glenoid implant fixation is a primary predictor of the success of RTSA and affects micromotion at the bone-implant interface. Augmented implants which incorporate specific geometry to address superior erosion are currently available, but the clinical outcomes of these implants are still considered short-term. The objective of this study was to investigate micromotion at the glenoid-baseplate interface for a standard, 3 mm and 6 mm lateralized baseplates, half-wedge, and full-wedge baseplates. It was hypothesized that the mechanism of load distribution from the baseplate to the glenoid will differ between implants, and these varying mechanisms will affect overall baseplate micromotion. Clinical CT scans of seven shoulders (mean age 69 years, 10°-19° glenoid inclinations) that were classified as having E2-type glenoid erosions were used to generate 3D scapula models using MIMICS image processing software (Materialise, Belgium) with a 0.75 mm mesh size. Each scapula was then repeatedly virtually reconstructed with the five implant types (standard,3mm,6mm lateralized, and half/full wedge; Fig.1) positioned in neutral version and inclination with full backside contact. The reconstructed scapulae were then imported into ABAQUS (SIMULIA, U.S.) finite element software and loads were applied simulating 15°,30°,45°,60°,75°, and 90° of abduction based on published instrumented in-vivo implant data. The micromotion normal and tangential to the bone surface, and effective load transfer area were recorded for each implant and abduction angle. A repeated measures ANOVA was used to perform statistical analysis. Maximum normal micromotion was found to be significantly less when using the standard baseplate (5±4 μm), as opposed to the full-wedge (16±7 μm, p=0.004), 3 mm lateralized (10±6 μm, p=0.017), and 6 mm lateralized (16±8 μm, p=0.007) baseplates (Fig.2). The half-wedge baseplate (11±7 μm) also produced significantly less micromotion than the full-wedge (p=0.003), and the 3 mm lateralized produced less micromotion than the full wedge (p=0.026) and 6 mm lateralized (p=0.003). Similarly, maximum tangential micromotion was found to be significantly less when using the standard baseplate (7±4 μm), as opposed to the half-wedge (12±5 μm, p=0.014), 3 mm lateralized (10±5 μm, p=0.003), and 6 mm lateralized (13±6 μm, p=0.003) baseplates (Fig.2). The full wedge (11±3 μm), half-wedge, and 3 mm lateralized baseplate also produced significantly less micromotion than the 6 mm lateralized (p=0.027, p=012, p=0.02, respectively). Both normal and tangential micromotion were highest at the 30° and 45° abduction angles (Fig.2). The effective load transfer area (ELTA) was lowest for the full wedge, followed by the half wedge, 6mm, 3mm, and standard baseplates (Fig.3) and increased with abduction angle. Glenoid baseplates with reduced lateralization and flat backside geometries resulted in the best outcomes with regards to normal and tangential micromotion. However, these types of implants are not always feasible due to the required amount of bone removal, and medialization of the bone-implant interface. Future work should study the acceptable levels of bone removal for patients with E-type glenoid erosion and the corresponding best implant selections for such cases. For any figures or tables, please contact the authors directly.
Massive irreparable rotator cuff tears often lead to superior migration of the humeral head, which can markedly impair glenohumeral kinematics and function. Although treatments currently exist for treating such pathology, no clear choice exists for the middle-aged patient demographic. Therefore, a metallic subacromial implant was developed for the purpose of restoring normal glenohumeral kinematics and function. The objective of this study was to determine this implant's ability in restoring normal humeral head position. It was hypothesized that (1) the implant would restore near normal humeral head position and (2) the implant shape could be optimized to improve restoration of the normal humeral head position. A titanium implant was designed and 3D printed. It consisted of four design variables that varied in both implant thickness (5mm and 8mm) and curvature of the humeral articulating surface (high constraint and low constraint. To assess these different designs, these implants were sequentially assessed in a cadaver-based biomechanical testing protocol. Eight cadaver specimens (64 ± 13 years old) were loaded at 0, 30, and 60 degrees of glenohumeral abduction using a previously developed shoulder simulator. An 80N load was equally distributed across all three deltoid heads while a 10N load was applied to each rotator cuff muscle. Testing states included a fully intact rotator cuff state, a posterosuperior massive rotator cuff tear state (cuff deficient state), and the four implant designs. An optical tracking system (Northern Digital, Ontario, Canada) was used to record the translation of the humeral head relative to the glenoid in both superior-inferior and anterior-posterior directions. The creation of a posterosuperior massive rotator cuff tear resulted in significant superior translation of the humeral head relative to the intact cuff state (P=0.016). No significant differences were observed between each implant design and the intact cuff state as all implants decreased the superior migration of the humeral head that was observed in the cuff deficient state. On average, the 5mm low and high constraint implant models were most effective at restoring normal humeral head position to that of the intact cuff state (-1.3 ± 2.0mm, P=0.223; and −1.5 ± 2.3mm, P=0.928 respectively). No significant differences were observed across all test states for anterior-posterior translation of the humeral head. The cuff deficient on average resulted in posterior translation of the humeral head, however, this was not statistically significant (P=0.128). Both low and high constraint implant designs were found to be most effective at restoring humeral head position to that of the intact cuff state, on average resulting in a small anterior offset (5mm high constraint: 2.0 ± 4.7mm, P=1.000; 8mm high constraint: 1.6 ± 4.9mm, P=1.000). The 5mm high constraint implant was most effective in restoring normal humeral head position in both the superior-inferior and anterior-posterior directions. The results from this study suggest the implant may be an effective treatment for restoring normal glenohumeral kinematics and function in patients with massive irreparable rotator cuff tears. Future studies are needed to address the mechanical efficiency related to arm abduction which is a significant issue related to patient outcomes.Superior-Inferior Translation
Anterior-Posterior Translation
Hemiarthroplasty is a common procedure that is an attractive alternative to total arthroplasty because it conserves natural tissue, allows for quicker recovery, and has a lower cost. One significant issue with hemiarthroplasties is that they lead to accelerated wear of the opposing native cartilage, likely due to the high stiffness of the implant. The purpose of this study was to investigate the range of currently available biomaterials for hemiarthroplasty applications. We employed a finite-element (FE) model of a radial head implant against the native capitellum as our joint model. The FE model was developed in ABAQUS v6.14 (Dassault Systèmes Simulia Corp., Providence, RI, USA). A solid axisymmetric concave implant with seven different materials and the native radial head were evaluated, six modelled as elastic materials with different Young's moduli (E) and Poisson's Ratios (ν), and one modelled as a Mooney-Rivlin hyperelastic material. The materials investigated were CoCr (E=230 GPa, ν = 0.3), PEEK (E=3.7 GPa, ν = 0.36), HDPE (E=2.7 GPa, ν = 0.42), UHMWPE (E=0.69 GPa, ν = 0.49), Bionate 75D (E=0.288 GPa, ν = 0.39), Bionate 55D (E=0.039 GPa, ν = 0.45), and Bionate 80A (modelled as a Mooney-Rivlin hyperelastic material). A load of 100 N was applied to the radius through the center of rotation representing a typical load through the radius. The variable of interest was articular contact stress on the capitellum. The CoCr implant had a maximum contact stress over 114% higher than the native radial head. By changing the material to lower the stiffness of the implant, the maximum contact stress was 24%, 70%, 105%, 111%, 113%, and 113% higher than the native radial head for Bionate 80A, Bionate 55D, Bionate 75D, UHMWPE, HDPE, and PEEK respectively. This work shows that lowering implant stiffness can reduce the contact stress on cartilage in hemiarthroplasty implants. By changing the material below a Young's modulus of ∼100 MPa elevated stresses on the capitellum can be markedly reduced and hence potentially reduce or prevent degenerative changes of the native articulating cartilage. Low stiffness implant materials are not a novel concept, but to date there have been few that investigate materials (such as Bionate) as a potential load bearing material for implant applications. Further work is required to assess the efficacy of these materials for articular bearing applications.
We measured the tension in the interosseous membrane
in six cadaveric forearms using an Cite this article:
Glenoid component loosening is a common reason for failed total shoulder arthroplasty. Multiple factors have been suggested as causes for component loosening that may be related to cement technique. The purpose of the study was to compare the load transfer across a polyethylene glenoid bone construct with two different cementing techniques. Eight cadaveric specimens underwent polyethylene glenoid component implantation. Four had cement around the pegs only (CPEG) and four had cement across the entire back (CBACK) of the implant including around the pegs. Step loading was performed with a pneumatic actuator and a non-conforming humeral head construct capable of applying loads at various angles. Strain gauges were placed at the superior and inferior poles of the glenoid and position trackers were applied to the superior and inferior aspects polyethylene component. Micro CT data were obtained before and after the loading protocol.Purpose
Method
The management of moderate to large engaging Hill-Sachs lesions is controversial and surgical options include remplissage, allograft reconstruction, and partial resurfacing arthroplasty. Few in-vitro studies have quantified their biomechanical characteristics and none have made direct comparisons. The purpose of this study was to compare joint stability and range of motion (ROM) among these procedures using an in-vitro shoulder simulator. It was hypothesized that all procedures would prevent defect engagement, but allograft and partial resurfacing would most accurately restore intact biomechanics; while remplissage would provide the greatest stabilization, possibly at the expense of motion. Eight cadaveric shoulders were tested on an active in-vitro shoulder simulator. Each specimen underwent testing in 11 conditions: intact, Bankart lesion, Bankart repair, and two unrepaired Hill-Sachs lesions (30% & 45%) which were then treated with each of the three techniques. Anterior joint stability, ROM in extension and internal-external rotation, and glenohumeral engagement were assessed. Stability was quantified as resistance, in N/mm, to an anteriorly applied load of 70N.Purpose
Method
The coronoid and collateral ligaments are key elbow stabilizers. When repair of comminuted coronoid fractures is not possible, prosthetic replacement may restore elbow stability. A coronoid prosthesis has been designed with an extended tip in an effort to augment elbow stability in the setting of residual collateral ligament insufficiency. The purpose of this biomechanical study, therefore, was to compare an anatomic coronoid replacement with an extended tip implant both with and without ligament insufficiency. Two coronoid prostheses were designed and developed based on CT-derived images adjusted for cartilage thickness: an anatomical implant and an extended-tip implant. Passive elbow extension was performed in 7 cadaveric arms in the varus and valgus positions. Varus-valgus laxity of the ulna relative to the humerus was quantified with a tracking system with an intact coronoid, a 40% coronoid deficiency, an anatomical prosthesis, and an extended prosthesis, with the collateral ligaments sectioned and repaired.Purpose
Method
The remplissage procedure may be performed as an adjunct to Bankart repair to address an engaging Hill-Sachs defect. Clinically, it has been reported that the remplissage procedure improves joint stability but that it may also restrict shoulder range of motion. The purpose of this biomechanical study was to examine the effects of the remplissage procedure on shoulder motion and stability. We hypothesized that the remplissage procedure would improve stability and prevent engagement but may have a deleterious effect on motion. Eight cadaveric forequarters were mounted on a custom biomechanical testing apparatus which applied simulated loads independently to the rotator cuff muscles and to the anterior, middle and posterior deltoid. The testing conditions included: intact shoulder, Bankart defect, Bankart repair, 2 Hill-Sachs defects (15%, 30%) with and without remplissage. Joint range of motion and translation were recorded with an optical tracking system. Outcomes measured were internal-external rotation range of motion in adduction and 90 combined abduction, extension range of motion and stability, quantified in terms of joint stiffness and engagement, in abduction.Purpose
Method
The remplissage technique of insetting the infraspinatus tendon and posterior joint capsule into an engaging Hill-Sachs lesion has gained in popularity. However, a standardized technique for suture anchor and suture placement has not been defined for this novel procedure. The purpose of this biomechanical study was to compare three remplissage techniques by evaluating their effects on joint stiffness and motion. Cadaveric forequarters (n=7) were mounted on a custom active biomechanical shoulder simulator. Three randomly ordered techniques were conducted: T1- anchors in the valley of the defect, T2- anchors in the rim of the humeral head; T3- anchors in the valley with medial suture placement. The testing conditions included: intact, Bankart, Bankart repair, and 15% & 30% HS lesions with repairs (T1, T2, T3). Outcome measures including internal-external range of motion and stability were recorded. Stability was quantified in terms of glenohumeral joint stiffness against an externally applied anterior force of 70N.Purpose
Method
The coronoid process is an integral component for elbow stability. In the setting of a comminuted coronoid fracture, where repair is not possible, a prosthetic device may be beneficial in restoring elbow stability. The hypothesis of this in-vitro biomechanical study was that an anatomic coronoid prosthesis would restore stability to the coronoid deficient elbow. A metal coronoid prosthesis was designed and developed based on CT-derived images adjusted for cartilage thickness. The kinematics and stability of eight fresh-frozen male cadaveric arms (mean age 77.4 years, range 69–92 years) were quantified in the intact state; after collateral ligament sectioning and repair (control state); after a simulated 40% transverse coronoid fracture; and after implantation of a coronoid prosthesis. Elbow flexion was simulated passively with the arm oriented in the varus position and the forearm in pronation. Varus-valgus angulation (VV) and internal-external rotation (IE) of the ulna relative to the humerus were quantified with an electromagnetic tracking system (Flock of Birds, Ascension Technologies, Burlington, VT, static accuracy: 1.8mm position, 0.5 orientation).Purpose
Method
Capitellum hemiarthroplasty is an emerging concept. The current metallic capitellar implants have spherical surface shapes, but the native capitellum is not spherical. This study evaluated the effect of capitellar implant shape on the contact mechanics of the radiocapitellar joint when articulating with the native radial head. Eight paired radii and humeri were potted in a custom jig. Articular casts were made with medium-viscosity resin while 85 N of axial load was applied to the reduced radiocapitellar joint at 0, 45, and 90 of elbow flexion, and at neutral, 50 pronation and 50 supination at each flexion angle. The native radiocapitellar articulation was compared to capitellar hemiarthroplasties of two surface designs (anatomical and spherical). Contact area and shape (circularity) were determined. Circularity was defined as the ratio of the minor axis and major axis of the shape.Purpose
Method