Highly cross-linked polyethylene liners in total hip replacement (THR) have allowed the use of larger diameter femoral heads. Larger heads allow for increased range of motion, decreased implant impingement, and protection against dislocation. The purpose of this study is to report the clinical and radiographic outcomes of patients with large femoral heads with HXLPE at 5 years post-op. A group of 124 patients (132 THRs) who had a primary THR with a 36mm or larger cobalt-chrome femoral head and a Durasul or Longevity liner (Zimmer; Warsaw, IN) were prospectively enrolled in this study. 93 THRs (88 patients) had minimum 5 year follow-up. All patients received a cementless acetabular shell (Trilogy or Inter-op, Zimmer Inc, Warsaw IN) and a highly cross-linked polyethylene liner with an inner diameter of 36 or 38mm. The median radiographic follow-up was 5.6 years (range 5.0–8.0), and patients were assessed clinically by Harris Hip score, UCLA activity score, EQ-5D, and SF-36 functional scores. Femoral head penetration was measured using the Martell Hip Analysis Suite. No osteolysis was seen in the pelvis or proximal femur, and no components failed due to aseptic loosening. Four patients have questionable signs of bone changes around the acetabular shell with future CT scans scheduled to help reach a final determination. The median acetabular shell abduction and anteversion were 44° (30–66°) and 13° (3–33°) respectively. There was no evidence of cup migration, screw breakage, or eccentric wear on the liner. Regarding the femoral component, there were no episodes of loosening, migration, osteolysis, or fracture. There was no significant difference in the median penetration rate from post-op to longest follow-up between the 36mm (24 patients) and 38mm (4 patients) femoral head groups (0.056±0.10mm/yr and 0.060±0.05mm/yr respectively). Therefore, the data were pooled into one group. Using every post-op to follow-up comparison, the linear regression penetration rate of this combined group was 0.003 mm/yr which is within the error detection of the Martell method. The median femoral head penetration rate during the first post-op year measured 0.59±1.04 mm/yr. In contrast, the median steady state wear rate from the 1yr film to the longest follow-up measured -0.009±0.15mm/yr. A linear regression steady state wear rate from the 1 year film to every follow-up of −0.031 mm/yr indicated no correlation between the magnitude of polyethylene wear and time. The mid-term results on this series of patients with THRs with a 36 or 38mm femoral head articulating with highly cross-linked polyethylene showed excellent clinical, radiographic, and wear results. The lack of early signs of osteolysis with the use of these large diameter femoral heads is encouraging. Continued and longer-term follow-up is needed to provide survivorship data.