Heterotopic ossification (HO) is defined as aberrant bone formation in extraskeletal locations. In this process, local stromal cells of mesenchymal origin abnormally differentiate, resulting in pathologic cartilage and bone matrix deposition. However, the specific cell type and mechanisms beyond this process are not well understood, in part due to the heterogeneity of progenitor cells involved. Here, a combination of single cell RNA sequencing (scRNA-Seq) and lineage tracing, defined the extent to which synovial / tendon sheath progenitor cells contribute to HO. For this purpose, a Tppp3 (tubulin polymerization-promoting protein family member 3) inducible reporter model was used, in combination with either Scx (Scleraxis) or Pdgfra (Platelet derived growth factor receptor alpha) reporter animals. Both arthroplasty-induced and tendon injury-mouse experimental HO models were utilized. ScRNA-Seq of tendon-induced traumatic HO suggested that Tppp3 is a progenitor cell marker for either osteochondral or tendon or cells. After HO induction, Tppp3 reporter+ cell population expanded in number and contributed to cartilage and bone formation in tendon and joint-associated HO. Using double reporter animals, we found that both Pdgfra+Tppp3+ and Pdgfra+Tppp3- progenitor cells produced HO-associated cartilage. Finally, the examination of human samples showed a significant population of TPPP3+ cells overlapping with osteogenic markers in areas of HO. Overall, these results provide novel observations that peritenon and synovial progenitor cells undergo abnormal osteochondral differentiation and contribute to heterotopic bone formation after trauma.
Heterotopic ossification is the formation of extraskeletal mineralized tissue commonly associated with either trauma or surgery. While several mouse models have been developed to better characterize the pathologic progression of HO, no model currently exists to study HO of the hip, the most common location of acquired HO in patients. Owing to the unique biological mechanisms underpinning the formation of HO in different tissues, we sought to develop a model to study the post-surgical HO of the hip. Wild-type mice C57BL/6J mice were used to study the procedure outcomes, while Pdgfra-CreERT2;mT/mG and Scx-GFP reporter animals were used for the lineage tracing experiments (total n=16 animals, male, 12 weeks old). An anterolateral approach to the hip was performed. Briefly, a 2 cm incision was made centered on the great trochanter and directed proximal to the iliac crest and distally over the lateral shaft of the femur. The joint was then reached following the intermuscular plane between the rectus femoris and gluteus medius muscles. After the joint was exposed, the articular cartilage was removed using a micropower drill with a 1.2 mm reamer. The medius gluteus and superficial fascia were then re-approximated with Vicryl 5-0 suture (Ethicon Inc, Somerville, NJ) and skin was then closed with Ethilon 5-0 suture (Ethicon Inc). Live high resolution XR imaging was performed every 2 wks to assess the skeletal tissues (Faxitron Bioptics, Tucson, AZ). The images were then scored using the Brooker classification. Ex-vivo microCT was conducted using a Skyscan 1275 scanner (Bruker-MicroCT, Kontich, Belgium). 3D reconstruction and analysis was performed using Dragonfly (ORS Inc., Montreal, Canada). For the histological analysis of specimens, Hematoxylin and Eosin (H&E), modified Goldner's Trichrome (GMT) stainings were performed. Reporter activity was assessed using fluorescent imaging.Introduction and Objective
Materials and Methods
Adipose tissue is an attractive source of mesenchymal stem cells (MSCs) as it is largely dispensable and readily accessible through minimally invasive procedures such as lipoaspiration. Until recently MSCs could only be isolated in a process involving ex-vivo culture. Pericytes (CD45−, CD146+, and CD34−) and adventitial cells (CD45−, CD146−, CD34+) represent two populations of MSCs (collectively termed perivascular stem cells or PSCs) that can be prospectively purified using fluorescence activated cell sorting (FACS). We performed FACS on lipoaspirate samples from n=129 donors to determine the frequency and yield of PSCs and to establish patient and processing factors that influence yield. The mean number of stromal vascular fraction (SVF) cells from 100ml of lipoaspirate was 37.8×106. Within the SVF, mean cell viability was 82%, with 31.6% of cells being heamatopoietic (CD45+). Adventitial cells and pericytes represented 31.6% and 7.9% of SVF cells respectively. As such, 200ml of lipoaspirate would theoretically yield 24.5 million MSCs –a sufficient number to enable point-of-care delivery for use in several orthopaedic applications. The yield and prevalence of PSCs were minimally affected by donor age, sex and BMI. Storing lipoaspirate samples for up to 72 hours prior to processing had no significant deleterious effects on MSC yield or viability. Our study confirms that pure populations of MSC-precursors (PSCs) can be prospectively isolated from adipose tissue, in sufficient quantities to negate the necessity for culture expansion while widening possible applications to include trauma, where a time delay between extraction and implantation excludes their use.
Primary soft tissue sarcomas of the extremities are uncommon. Many such lesions will present to specialists in other clinics such as specialist Hand or Foot and Ankle clinics. Many are of a small size at presentation and may appear to be alternate, more common pathology. We collected data from all those patients with acral soft tissues sarcomas and referred to the Oxford Sarcoma Service, Nuffield Orthopaedic Centre, Oxford over a thirteen year period from 1997 – 2010. Data were collected regarding the primary suspected diagnosis, the final diagnosis, the referral route and whether patients had undergone previous inadvertent excision.Introduction
Methods
A GP may only encounter one sarcoma in their professional career. Early diagnosis and treatment will improve the outcomes of this rare and malignant disease. Guidelines designed to lead to earlier diagnosis of the most common cancers were introduced by NICE in 2000 and were updated in 2005. These advise and assist in the early referral of potential bone and soft tissue sarcoma. Prior to 2000 only ~10% of GP referrals were proven to be malignant. In a referral region of ∼3m, we reviewed the referral patterns of suspected sarcoma by General Practitioners since 2005 in an effort to determine whether the published NICE guidelines had influenced an improvement in the diagnosis and management of malignant disease.Introduction
Methods
The incidence of scoliosis is 2/1000 population in the UK with 80% being idiopathic. In the Royal Victoria Hospital, Belfast there are approximately 25 scoliosis operations per year, the majority are for idiopathic causes and are limited to posterior instrumentation and fusion. It is current practice in this hospital to use a cell salvage machine for every case managed by nursing staff. To ascertain the requirement for and the economical viability of cell salvage during posterior instrumented scoliosis surgery.Background
Objective
1. A new operation of body-to-body intervertebral fusion by grafts introduced through a posterior approach is described. This is a preliminary report of early results, with follow-up to two years, which seems to be encouraging. 2. In spondylolisthesis, abnormal mobility of the loose posterior neural arch is believed in itself to cause nerve root pressure, and excision of the arch is an important part of the operation. 3. In the few cases where spinal fusion is needed after removal of a prolapsed intervertebral discâand the proportion is now very lowâposterior intervertebral fusion has proved very satisfactory.