In total knee arthroplasty, polyethylene wear has been a major cause of revision surgery. However, it is sometimes difficult to determine the time of revision surgery in elderly people due to their concomitant diseases. Therefore, the brace for measuring polyethylene wear under computed tomography was developed. The brace works by strapping a femoral component tightly to a polyethylene insert by applying compression force between the sole of the foot and the thigh. Holes of 1, 2, 5, 10 mm in diameter and 0.1, 0.2, 0.5 and 1 mm in depth were created in the posteromedial part of polyethylene inserts. The inserts were provided from Teijin-nakashima Co. ltd. (Jodo, Okayama, Japan). The Hi-tech knee artificial joint (Teijin-nakashima Co. ltd.) was applied to a cadaveric knee and CT images of the knee were taken with a combination of insets with varying diameters and depths holes, using Aquilion ONE (Toshiba Medical Systems Corporation, Ohtawara, Japan). The finding conditions were as follows, Voltage; 120V, Current; 5A, slice thickness; 0.5 mm helical. The patient, who received total knee arthroplasty over 15 years ago, wore the brace and was examined using computed tomography. Afterward, the patient received revision surgery to replace the worn insert into new one. The removed insert was measured with a three-dimensional measuring machine (Cyclon, Mitsutoyo Co. ltd., Kawasaki, Japan). At a 1.0 mm depth, all holes could be detected. At a 0.5 mm depth, holes of 2, 5, 10 mm in diameter could be detected. At a 0.1∼0.2 mm depth, there was no hole detected. After revision surgery, a three-dimensional measuring machine revealed a 1.8 mm thickness of the insert on the medial side. The CT reconstruction image showed a1.84 mm thickness similar to the virtually measured figure.Methods
Results