Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 104 - 104
1 Jan 2016
Omori T Marumo K Saito M Suzuki H Kurosaka D Ozawa M Ikeda R Miyasaka T
Full Access

In total knee arthroplasty (TKA), rotational alignment of the femoral component is determined by the measured resection technique, in which anatomical landmarks serve as determinants, or by the gap balancing technique, in which the femoral component is positioned relative to the resected aspect of the tibia. The latter technique is considered logically more favorable for obtaining rectangular extension and flexion gaps. However, in patients with severe changes attributed to osteoarthritis and/or a severely limited range of motion, it is difficult to perform adequate posterior clearance (e.g. bone spur excision) before resecting the posterior femoral condyle, often causing unbalanced extension and flexion gaps after resection. Thus, the gap balancing technique is more technically demanding and requires higher skill. We employed a computed tomography (CT)-based navigation system to develop a simple and standardized surgical technique by performing two assessments: Assessment 1, we investigated the relationship between the position of the femoral component determined by the gap balancing technique and anatomical landmarks; and Assessment 2, we placed the femoral component at the position determined by the measured resection technique and within the acceptable gap-balanced range determined in Assessment 1. In Assessment 1, 18 knees with osteoarthritis were treated by posterior stabilized TKA for varus deformity. The extension-flexion balance after resection of the distal femoral condyle and the proximal tibia was within 3° in all cases. Posterior bone resection was performed parallel to the resected aspect of the tibia and at 90° of flexion under constant compression applied using a tensor. In other words, the rotational alignment of the femoral component was determined by the gap balancing technique, and its position relative to the posterior condylar axis (PCA) and clinical transepicondylar axis (CEA), which are landmarks in the measured resection technique, and the condylar twist angle (CTA; the angle between the CEA and PCA) were measured, and their relationships were quantitatively determined. The CTA, which was determined based on the preoperative CT data, was 4.7– 9.6° (mean, 7.05 ± 1.35°), while the aspect of the femoral resection was 3.0–8.3° externally rotated (mean, 5.6 ± 1.6°) to the PCA; a strong positive correlation was found between the rotational alignment of the femoral component and the CTA (p < 0.0001, R2 = 0.871). The aspect of the femoral resection was 0.3–2.6° internally rotated (mean, 1.4 ± 0.6°) to the CEA, and no correlation with the CTA was apparent. In Assessment 2, 39 knees with an extension-flexion balance ≤3° were examined to determine the internal-external rotation balance. Based on the results of Assessment 1, we employed the measured resection technique and placed the femoral component by rotationally aligning the target, which was 1.4° internally rotated to the CEA. The final rotational alignment of the femoral component was 2.0 ± 0.6° internally rotated to the CEA; the internal-external rotation balance at 90° of flexion was good and more toward external rotation by 0.72 ± 1.61°. The results demonstrated that the measured resection technique enables placement of the femoral component within an acceptable range of rotational alignment.