Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 25 - 25
1 May 2017
Hurley R Concannon J Lally N McCabe J
Full Access

Background

Comminuted fractures involving the tibia are associated with a high level of complications including delayed healing and non-union, in conjunction with dramatically increased healthcare costs. Certain clinicians utilise a Pixel Value Ratio (PRV) of 1 to indicate such fracture healing. The subjectivity of this method has led to mixed outcomes including regenerate fracture. The poor prognosis of complex load bearing fractures is accentuated by the fact that no quantitative gold standard currently exists to which clinicians can reference regarding the definition of a healed fracture. The aim of the current study is to use patient specific finite element analysis of complex tibial fractures treated with Ilizarov frames to demonstrate callus maturation and to determine the optimum frame removal time.

Methods

3 patients (2 males, 1 female) were analysed following presentation with complex tibial fractures treated with Ilizarov frames. Patient specific computational analysis was performed according to radiographic data, incorporating maturing material properties to analyse the callus response to weight bearing over the healing timeframe. Computational results were compared to the PVR method to evaluate its efficacy in determining the optimum Ilizarov frame removal time.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 110 - 110
1 May 2017
Hurley R Devitt A
Full Access

Background

New marker free motion analysis systems are being used extensively in the area of sports medicine and physiotherapy. The accuracy and validity of use in an orthopaedic setting have not been fully assessed for these newer marker free motion analysis systems. The aim of this study is to compare leg length and varus/valgus knee measurements performed by leg measurement x-ray, and performed using the new marker free motion analysis system (Organic motion biostage).

Methods

Patients attending the orthopaedic department for total knee replacements were recruited. They underwent radiological leg measurement x-ray, clinical leg measurement, and finally assessment using the organic motion biostage system. These were analysed using the motion monitor software, microsoft excel and minitab 16.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_8 | Pages 73 - 73
1 Apr 2017
Hurley R Barry C Bergin D Shannon F
Full Access

Background

The anatomy of the human body has been studied for centuries. Despite this, recent articles have announced the presence of a new knee ligament- the anterolateral ligament. It has been the subject of much discussion and media commentary. Previous anatomical studies indicate its presence, and describe its location, origin, course and insertion. Magnetic resonance imaging (MRI) is the best and most commonly used investigation to assess the ligamentous structure of the knee. To date, most MRI knee reports make no mention of the anterolateral ligament. The aim of this study was to assess for the presence of the anterolateral ligament using MRI, and to describe the structure if visualised.

Methods

All right knee MRIs performed on a Siemens Magnetom Espree 1.5 Tesla scanner in Merlin Park Hospital over a 4 year period were retrospectively analysed. Patients born before 1970, or with reported abnormalities were excluded. The normal MRIs were then analysed by a consultant radiologist specialising in musculoskeletal imaging. Measurements on origin, insertion, course and length were noted.