In recent years, the use of modern cementless implants in total knee arthroplasty has been increasing in popularity. These implants take advantage of new technologies such as additive manufacturing and potentially provide a promising alternative to cemented implant designs. The purpose of this study was to compare implant migration and tibiofemoral contact kinematics of a cementless primary total knee arthroplasty (TKA) implanted using either a gap balancing (GB) or measured resection (MR) surgical technique. Thirty-nine patients undergoing unilateral TKA were recruited and assigned based on surgeon referral to an arthroplasty surgeon who utilizes either a GB (n = 19) or a MR (n = 20) surgical technique. All patients received an identical fixed-bearing, cruciate-retaining beaded peri-apatite coated cementless femoral component and a pegged highly porous cementless tibial baseplate with a condylar stabilizing tibial insert. Patients underwent a baseline radiostereometric analysis (RSA) exam at two weeks post-operation, with follow-up visits at six weeks, three months, six months, and one year post-operation. Migration including maximum total point motion (MTPM) of the femoral and tibial components was calculated over time. At the one year visit patients also underwent a kinematic exam using the RSA system.Background
Methods
Surgeons performing a total knee replacement (TKR) have two techniques to assist them achieve proper bone resections and ligament tension – gap balancing (GB) and measured resection (MR). GB relies on balancing ligaments prior to bony resections, whereas bony resections are made based on anatomical landmarks in MR. Many studies have been done to compare the implant migration and kinematics between the two techniques, but the results have been varied. However, these studies have not been done on modern anatomically designed prostheses using radiostereometric analysis (RSA). Anatomical designs attempt to mimic the normal knee joint structure to return more natural kinematics to the joint, with emphasis on eliminating both paradoxical anterior motion and reduced posterior femoral rollback. Given the major design differences between anatomical and non-anatomical prostheses, it is important to investigate whether one surgical technique may have advantages another. We hypothesize that there would be no difference between GB and MR techniques in implant migration, but that GB might provide better knee kinematics. Patients were recruited to receive an anatomically designed prosthesis and randomized to groups where the GB or MR technique is used. For all patients in the study, RSA images were acquired at a 2 week baseline, as well as at 6 weeks, 3 months, and 6 months post-operatively. These images were used to collect the maximum total point motion (MTPM) of the tibial and femoral implant components relative to the bone using a model-based RSA software. A series of RSA images were also acquired at 3-months post-operatively at different knee flexion angles, ranging in 20° increments from 0° to 100°. Model-based RSA software was used to obtain the 3D positions and orientations of the femoral and tibial components, which were used to obtain the anterior-posterior (AP) contact locations for each condyle.Introduction
Methods
The purpose of the present study was to compare patient-specific instrumentation (PSI) and conventional surgical instrumentation (CSI) for total knee arthroplasty (TKA) in terms of early implant migration, alignment, surgical resources, patient outcomes, and costs. The study was a prospective, randomized controlled trial of 50 patients undergoing TKA. There were 25 patients in each of the PSI and CSI groups. There were 12 male patients in the PSI group and seven male patients in the CSI group. The patients had a mean age of 69.0 years (Aims
Patients and Methods
The effectiveness of patient specific instrumentation (PSI) to perform total knee arthroplasty (TKA) remains controversial. Multiple studies have been published that reveal conflicting results on the effectiveness of PSI, but no study has analyzed the contact kinematics within knee joints replaced with the use of PSI. Since a departure from normal kinematics can lead to eccentric loading, premature wear, and component loosening, studying the kinematics in patients who have undergone TKA with PSI can provide valuable insight on the ability of PSI to improve functionality and increase longevity. The goal of the present study was to compare femoral and tibial component migration (predictive of long-term loosening and revision) and contact kinematics following TKA using conventional instruments (CI) and PSI based surgical techniques. The study was designed as a prospective, randomized controlled trial of 50 patients, with 25 patients each in the PSI and CI groups, powered for radiostereometric analysis (RSA). Patients in the PSI group received an MRI and standing 3-foot x-rays to construct patient-specific cut-through surgical guides for the femur and tibia with a mechanical limb alignment. All patients received the same posterior-stabilized implant with marker beads inserted in the bone around the implants to enable RSA imaging. Patients underwent supine RSA exams at multiple time points (two and six weeks, three and six months, and one and two years). At 2 years post-op, a series of RSA radiographs were acquired at different knee flexion angles, ranging in 20° increments from 0° to 120°, to measure the tibiofemoral contact kinematics. Migrations of the femoral and tibial components were calculated using model-based RSA software. Kinematics were measured for each condyle for magnitude of excursion, contact location, and stability.Introduction
Methods
The purpose of this study was to compare clinical
outcomes of total knee arthroplasty (TKA) after manipulation under
anaesthesia (MUA) for post-operative stiffness with a matched cohort
of TKA patients who did not requre MUA. In total 72 patients (mean age 59.8 years, 42 to 83) who underwent
MUA following TKA were identified from our prospective database
and compared with a matched cohort of patients who had undergone
TKA without subsequent MUA. Patients were evaluated for range of
movement (ROM) and clinical outcome scores (Western Ontario and
McMaster Universities Arthritis Index, Short-Form Health Survey,
and Knee Society Clinical Rating System) at a mean follow-up of
36.4 months (12 to 120). MUA took place at a mean of nine weeks
(5 to 18) after TKA. In patients who required MUA, mean flexion
deformity improved from 10° (0° to 25°) to 4.4° (0° to 15°) (p <
0.001),
and mean range of flexion improved from 79.8° (65° to 95°) to 116°
(80° to 130°) (p <
0.001). There were no statistically significant
differences in ROM or functional outcome scores at three months,
one year, or two years between those who required MUA and those
who did not. There were no complications associated with manipulation At most recent follow-up, patients requiring MUA achieved equivalent
ROM and clinical outcome scores when compared with a matched control
group. While other studies have focused on ROM after manipulation,
the current study adds to current literature by supplementing this
with functional outcome scores. Cite this article: