The exact aetiology and pathogenesis of microdamage-induced long bone fractures remain unknown. These fractures are likely to be the result of inadequate bone remodelling in response to damage. This study aims to identify an association of osteocyte apoptosis, the presence of osteocytic osteolysis, and any alterations in sclerostin expression with a fracture of the third metacarpal (Mc-III) bone of Thoroughbred racehorses. A total of 30 Mc-III bones were obtained; ten bones were fractured during racing, ten were from the contralateral limb, and ten were from control horses. Each Mc-III bone was divided into a fracture site, condyle, condylar groove, and sagittal ridge. Microcracks and diffuse microdamage were quantified. Apoptotic osteocytes were measured using TUNEL staining. Cathepsin K, matrix metalloproteinase-13 (MMP-13), HtrA1, and sclerostin expression were analyzed.Objectives
Methods
The aim of this study was to evaluate the role of peripheral blood derived mononucleated cells (PBMC) in osteochondral repair. We compared the healing of a critical size osteochondral defect in the medial femoral condyle and lateral trochlear sulcus in an ovine model.
Massive rotator cuff repairs have up to 60% failure rate and repair of a chronic repair can have up to 40% failure rate. With this in mind, new methodologies are being to being developed to overcome this problem. The use of tendon augmentation grafts is one of them. Prior attempts have shown equivocal or poorer outcomes to control repairs. Aims and objectives: The specific aim of these expereiments was to test how well ovine tendon cells would take to a specific biological augmentation graft (Ligamimetic), and wheter tissue engineering techniques would enhance this. Tendon cells harvested from ovine tendons will be cultured, exposed to the tendon augmentation graft, and analysed to see how well it takes to the tendon cells. We have conducted a 21 day experiment, sampling at days 7, 14, and 21. The experiment will look in sheep tendon cells:1. Platelet rich plasma: A comparison of the effects of platelet rich plasma to cell adherence, cell proliferation, and collagen production. Mesenchymal stem cell: A comparison of the effects of mesenchymal stem cells to the material on cell adherence, cell proliferation, and collagen production.Introduction
Method
Rotator cuff tears remain a problem, with massive tears having a failure rate of repair reported of up to 60%, despite advances in surgical techniques. Tissue engineering techniques offers the possibility of regenerating damaged tendon tissue to a pre-injury state. We explore these techniques by implanting two novel tendon augmentation grafts with use of platelet rich plasma (PRP) in sheep. A total of 24 sheep were operated on, with the infraspinatus being surgically cut from its attachment to the humeral head. Each tendon was repaired using suture anchors and an interpositional implant according to 4 groups: (1) Empty control, (2) Novel collagen fibre implant with PRP (3) A novel collagen sponge implant (4) and the collagen sponge with PRP. The sheep were killed at 12 weeks and the implant site harvested and its histology evaluated.Introduction
Methods
Mechanical trauma to articular cartilage is a known risk factor for Osteoarthritis (OA). The application of single impact load (SIL) to equine articular cartilage is described as a model of early OA changes and shown to induce a damage/repair response. Recombinant Human Fibroblast Growth Factor-18 (rhFGF-18) has been previously shown to have anabolic effects on chondrocytes in vitro. The aim of this in vitro study was to ascertain the effect of rhFGF-18 on the repair response of mechanically damaged articular cartilage. Articular cartilage discs were harvested from healthy mature horses (n=4) and subjected to single impact load using a drop tower device. The impacted explants, together with unimpacted controls were cultured in modified DMEM +/− 200ng/ml rhFGF-18 for up to 30 days. Glycosaminoglycan (GAG) release into the media was measured using the dimethylmethylene blue (DMMB) assay, aggrecan neopepitope CS846 and Collagen Propeptide II (CPII) were measured by ELISA. Histological analysis, immunohistochemistry and TUNEL staining were used to assess proteoglycan content, type II and type VI collagen localisation, cell morphology, repair cell number and cell death.Background
Methods
The purpose of this study was to investigate whether combining PRP or concentrated bone marrow aspirate (CBMA) with a biphasic collagen/glycosaminoglycan (CG) scaffold would improve the outcome of the treatment of full thickness osteochondral defects in sheep. Osteochondral defects (5.8×6mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joints of 24 sheep. Defects were either left empty or filled with a 6×6mm CG scaffold, either on its own or in combination with PRP or CBMA (n=6). At 6 months the sheep were euthanised, and the repair tissue subjected to mechanical testing, gross morphological analysis, semi quantitative histological scoring and immunohistochemical staining including types I, II and VI collagen.Introduction
Materials and Methods