header advert
Results 1 - 2 of 2
Results per page:
The Bone & Joint Journal
Vol. 95-B, Issue 11 | Pages 1480 - 1483
1 Nov 2013
Hooper GJ Gilchrist N Maxwell R March R Heard A Frampton C

We studied the bone mineral density (BMD) and the bone mineral content (BMC) of the proximal tibia in patients with a well-functioning uncemented Oxford medial compartment arthroplasty using the Lunar iDXA bone densitometer. Our hypothesis was that there would be decreased BMD and BMC adjacent to the tibial base plate and increased BMD and BMC at the tip of the keel.

There were 79 consecutive patients (33 men, 46 women) with a mean age of 65 years (44 to 84) with a minimum two-year follow-up (mean 2.6 years (2.0 to 5.0)) after unilateral arthroplasty, who were scanned using a validated standard protocol where seven regions of interest (ROI) were examined and compared with the contralateral normal knee. All had well-functioning knees with a mean Oxford knee score of 43 (14 to 48) and mean Knee Society function score of 90 (20 to 100), showing a correlation with the increasing scores and higher BMC and BMD values in ROI 2 in the non-implanted knee relative to the implanted knee (p = 0.013 and p = 0.015, respectively).

The absolute and percentage changes in BMD and BMC were decreased in all ROIs in the implanted knee compared with the non-implanted knee, but this did not reach statistical significance. Bone loss was markedly less than reported losses with total knee replacement.

There was no significant association with side, although there was a tendency for the BMC to decrease with age in men. The BMC was less in the implanted side relative to the non-implanted side in men compared with women in ROI 2 (p = 0.027), ROI 3 (p = 0.049) and ROI 4 (p = 0.029).

The uncemented Oxford medial compartment arthroplasty appears to allow relative preservation of the BMC and BMD of the proximal tibia, suggesting that the implant acts more physiologically than total knee replacement. Peri-prosthetic bone loss is an important factor in assessing long-term implant stability and survival, and the results of this study are encouraging for the long-term outcome of this arthroplasty.

Cite this article: Bone Joint J 2013;95-B:1480–3.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 42 - 42
1 Sep 2012
Hooper G Gilchrist N Frampton C Maxwell R Heard A Mcguire P
Full Access

Bone mineral density (BMD) and bone mineral content (BMC) have not been previously assessed in unicompartmental knee replacement (UKR). We studied the early bone changes beneath the uncemented Oxford medial UKR. Our hypothesis was that this implant should decrease the shear stresses across the bone-implant interface and result in improved BMD and BMC beneath the tibial component.

Using the Lunar iDXA and knee specific software we developed 7 regions of interest (ROI) in the proximal tibia and assessed 38 patients with an uncemented Oxford UKR at 2 years. We measured the replaced knee and contralateral unreplaced knee using the same ROI and compared the BMD and BMC. The initial precision study in 20 patients demonstrated high precision in all areas.

There were 12 males and 16 females with an average age of 65.8 years (46–84 years). ROI 1 and 2 were beneath the tibial tray and had significantly less BMC (p=0.023 and 0.001) and BMD (p=0.012 and 0.002). ROI 3 was the lateral tibial plateau and this area also had significantly less BMC (p=0.007) and BMD (p=0.0001). ROI 4 and 5 immediately below the tibial keel had no significant change. These changes were independent of gender and age.

These results were surprising in that the universal loss of BMC and BMD suggested that bone loading of the proximal tibia was not improved even after a UKR. The better BMD and BMC adjacent to the keel confirms other studies that show improved bone in-growth around keels and pegs in the uncemented tibial component. A prospective longitudinal study has been developed to compare BMD and BMC changes over time to see whether these changes are dynamic.