Advertisement for orthosearch.org.uk
Results 1 - 3 of 3
Results per page:
Applied filters
General Orthopaedics

Include Proceedings
Dates
Year From

Year To
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 52 - 52
22 Nov 2024
Schulze M Nonhoff M Hasselmann J Fobker M Gosheger G Moriarty F Zeiter S Tapia-Dean J Kuntze A Puetzler J
Full Access

Aim

The utilization of silver as an anti-infective agent is a subject of debate within the scientific community, with recurring discussions surrounding its biocompatibility. Presently, galvanic silver coating finds widespread clinical application in mitigating infection risks associated with large joint arthroplasties. While some instances have linked this coating to sporadic cases of localized argyria, these occurrences have not exhibited systematic or functional limitations. To address concerns regarding biocompatibility, a novel approach has been devised for anti-infective implant coatings: encapsulating silver nitrate within a biopolymer reservoir for non-articulating surfaces. This poly-L-lactic acid layer releases silver ions gradually, thereby circumventing biocompatibility concerns.

Method

Female C57BL/6 mice were utilized as an experimental model, with 6x2 mm Ti6Al4V discs, coated with or without the biopolymer-protected silver coating, implanted subcutaneously on both sides of the vertebrae. Daily blood samples were collected, and serum was analyzed for C-reactive protein (CRP) and silver concentration. After three days, histopathological analyses were conducted on the surrounding soft tissue pouch.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 87 - 87
1 Oct 2022
Puetzler J Hasselmann J Gosheger G Niemann S Fobker M Hillebrand J Schwarze J Theil C Schulze M
Full Access

Aim

A novel anti-infective biopolymer implant coating was developed to prevent bacterial biofilm formation and allow on-demand burst release of anti-infective silver (Ag) into the surrounding of the implant at any time after surgery via focused high-energy extracorporeal shock waves (fhESW).

Method

A semi-crystalline Poly-L-lactic acid (PLLA) was loaded with homogeneously dissolved silver (Ag) applied onto Ti6Al4V discs. A fibroblast WST-1 assay was performed to ensure adequate biocompatibility of the Ag concentration at 6%. The prevention of early biofilm formation was investigated in a biofilm model with Staphylococcus epidermidis RP62A after incubation for 24 hours via quantitative bacteriology.

In addition, the effect of released Ag after fhESW (Storz DUOLITH SD1: 4000 impulses, 1,24 mJ/mm2, 3Hz, 162J) was assessed via optical density of bacterial cultures (Escherichia coli TG1, Staphylococcus epidermidis RP62A, Staphylococcus aureus 6850) and compared to an established electroplated silver coating. The amount of released Ag after the application of different intensities of fhESW was measured and compared to a control group without fhESW via graphite furnace atomic absorption spectrometry (GF-AAS), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS).


Bone & Joint Research
Vol. 10, Issue 7 | Pages 425 - 436
16 Jul 2021
Frommer A Roedl R Gosheger G Hasselmann J Fuest C Toporowski G Laufer A Tretow H Schulze M Vogt B

Aims

This study aims to enhance understanding of clinical and radiological consequences and involved mechanisms that led to corrosion of the Precice Stryde (Stryde) intramedullary lengthening nail in the post market surveillance era of the device. Between 2018 and 2021 more than 2,000 Stryde nails have been implanted worldwide. However, the outcome of treatment with the Stryde system is insufficiently reported.

Methods

This is a retrospective single-centre study analyzing outcome of 57 consecutive lengthening procedures performed with the Stryde nail at the authors’ institution from February 2019 until November 2020. Macro- and microscopic metallographic analysis of four retrieved nails was conducted. To investigate observed corrosion at telescoping junction, scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX) were performed.