The aim of this study was to present the first retrieval analysis findings of PRECICE STRYDE intermedullary nails removed from patients, providing useful information in the post-market surveillance of these recently introduced devices. We collected ten nails removed from six patients, together with patient clinical data and plain radiograph imaging. We performed macro- and microscopic analysis of all surfaces and graded the presence of corrosion using validated semiquantitative scoring methods. We determined the elemental composition of surface debris using energy dispersive x-ray spectroscopy (EDS) and used metrology analysis to characterize the surface adjacent to the extendable junctions.Aims
Methods
The Attune total knee arthroplasty (TKA) has been used in over 600 000 patients worldwide. Registry data show good clinical outcome; however, concerns over the cement-tibial interface have been reported. We used retrieval analysis to give further insight into this controversial topic. We examined 12 titanium (Ti) PFC Sigma implants, eight cobalt-chromium (CoCr) PFC Sigma implants, eight cobalt-chromium PFC Sigma rotating platform (RP) implants, and 11 Attune implants. We used a peer-reviewed digital imaging method to quantify the amount of cement attached to the backside of each tibial tray. We then measured: 1) the size of tibial tray thickness, tray projections, peripheral lips, and undercuts; and 2) surface roughness (Ra) on the backside and keel of the trays. Statistical analyses were performed to investigate differences between the two designs.Objectives
Methods
The use of ceramic femoral heads in total hip arthroplasty (THA) has increased due to their proven low bearing wear characteristics. Ceramic femoral heads are also thought to reduce wear and corrosion at the head-stem junction with titanium (Ti) stems when compared with metal heads. We sought to evaluate taper damage of ceramic compared with metal heads when paired with cobalt chromium (CoCr) alloy stems in a single stem design. This retrieval study involved 48 total hip arthroplasties (THAs) with CoCr V40 trunnions paired with either CoCr (n = 21) or ceramic (n = 27) heads. The taper junction of all hips was evaluated for fretting/corrosion damage and volumetric material loss using a roundness-measuring machine. We used linear regression analysis to investigate taper damage differences after adjusting for potential confounding variables.Objectives
Methods
Surgeons have commonly used modular femoral heads and stems from
different manufacturers, although this is not recommended by orthopaedic
companies due to the different manufacturing processes. We compared the rate of corrosion and rate of wear at the trunnion/head
taper junction in two groups of retrieved hips; those with mixed
manufacturers (MM) and those from the same manufacturer (SM). We identified 151 retrieved hips with large-diameter cobalt-chromium
heads; 51 of two designs that had been paired with stems from different
manufacturers (MM) and 100 of seven designs paired with stems from
the same manufacturer (SM). We determined the severity of corrosion
with the Goldberg corrosion score and the volume of material loss
at the head/stem junction. We used multivariable statistical analysis
to determine if there was a significant difference between the two
groups. Aims
Materials and Methods
The National Joint Registry for England, Wales and Northern Ireland
(NJR) has extended its scope to report on hospital, surgeon and
implant performance. Data linkage of the NJR to the London Implant
Retrieval Centre (LIRC) has previously evaluated data quality for
hip primary procedures, but did not assess revision records. We analysed metal-on-metal hip revision procedures performed
between 2003 and 2013. A total of 69 929 revision procedures from
the NJR and 929 revised pairs of components from the LIRC were included.Aims
Methods
Arthroplasty registries are important for the
surveillance of joint replacements and the evaluation of outcome. Independent
validation of registry data ensures high quality. The ability for
orthopaedic implant retrieval centres to validate registry data
is not known. We analysed data from the National Joint Registry
for England, Wales and Northern Ireland (NJR) for primary metal-on-metal
hip arthroplasties performed between 2003 and 2013. Records were
linked to the London Implant Retrieval Centre (RC) for validation.
A total of 67 045 procedures on the NJR and 782 revised pairs of
components from the RC were included. We were able to link 476 procedures
(60.9%) recorded with the RC to the NJR successfully. However, 306
procedures (39.1%) could not be linked. The outcome recorded by the
NJR (as either revised, unrevised or death) for a primary procedure
was incorrect in 79 linked cases (16.6%). The rate of registry-retrieval
linkage and correct assignment of outcome code improved over time.
The rates of error for component reference numbers on the NJR were
as follows: femoral head category number 14/229 (5.0%); femoral head
batch number 13/232 (5.3%); acetabular component category number
2/293 (0.7%) and acetabular component batch number 24/347 (6.5%). Registry-retrieval linkage provided a novel means for the validation
of data, particularly for component fields. This study suggests
that NJR reports may underestimate rates of revision for many types
of metal-on-metal hip replacement. This is topical given the increasing
scope for NJR data. We recommend a system for continuous independent
evaluation of the quality and validity of NJR data. Cite this article:
Following the recall of modular neck hip stems
in July 2012, research into femoral modularity will intensify over
the next few years. This review aims to provide surgeons with an
up-to-date summary of the clinically relevant evidence. The development
of femoral modularity, and a classification system, is described.
The theoretical rationale for modularity is summarised and the clinical
outcomes are explored. The review also examines the clinically relevant problems
reported following the use of femoral stems with a modular neck. Joint replacement registries in the United Kingdom and Australia
have provided data on the failure rates of modular devices but cannot
identify the mechanism of failure. This information is needed to
determine whether modular neck femoral stems will be used in the
future, and how we should monitor patients who already have them implanted. Cite this article:
Improvements in the surgical technique of total
knee replacement (TKR) are continually being sought. There has recently
been interest in three-dimensional (3D) pre-operative planning using
magnetic resonance imaging (MRI) and CT. The 3D images are increasingly
used for the production of patient-specific models, surgical guides
and custom-made implants for TKR. The users of patient-specific instrumentation (PSI) claim that
they allow the optimum balance of technology and conventional surgery
by reducing the complexity of conventional alignment and sizing
tools. In this way the advantages of accuracy and precision claimed
by computer navigation techniques are achieved without the disadvantages
of additional intra-operative inventory, new skills or surgical
time. This review describes the terminology used in this area and debates
the advantages and disadvantages of PSI.
Fracture of a ceramic component in total hip
replacement is a rare but potentially catastrophic complication.
The incidence is likely to increase as the use of ceramics becomes
more widespread. We describe such a case, which illustrates how
inadequate initial management will lead to further morbidity and
require additional surgery. We present the case as a warning that
fracture of a ceramic component should be revised to another ceramic-on-ceramic
articulation in order to minimise the risk of further catastrophic
wear.
Blood metal ions have been widely used to investigate
metal-on-metal hip replacements, but their ability to discriminate
between well-functioning and failed hips is not known. The Medicines
and Healthcare products Regulatory Agency (MHRA) has suggested a
cut-off level of 7 parts per billion (ppb). We performed a pair-matched, case-control study to investigate
the sensitivity and specificity of blood metal ion levels for diagnosing
failure in 176 patients with a unilateral metal-on-metal hip replacement.
We recruited 88 cases with a pre-revision, unexplained failed hip
and an equal number of matching controls with a well-functioning
hip. We investigated the 7 ppb cut-off level for the maximum of
cobalt or chromium and determined optimal mathematical cut-off levels
from receiver-operating characteristic curves. The 7 ppb cut-off level for the maximum of cobalt or chromium
had a specificity of 89% and sensitivity 52% for detecting a pre-operative
unexplained failed metal on metal hip replacement. The optimal cut-off
level for the maximum of cobalt or chromium was 4.97 ppb and had
sensitivity 63% and specificity 86%. Blood metal ions had good discriminant ability to separate failed
from well-functioning hip replacements. The MHRA cut-off level of
7 ppb provides a specific test but has poor sensitivity.
The Articular Surface Replacement (ASR) hip resurfacing arthroplasty has a failure rate of 12.0% at five years, compared with 4.3% for the Birmingham Hip Resurfacing (BHR). We analysed 66 ASR and 64 BHR explanted metal-on-metal hip replacements with the aim of understanding their mechanisms of failure. We measured the linear wear rates of the acetabular and femoral components and analysed the clinical cause of failure, pre-revision blood metal ion levels and orientation of the acetabular component. There was no significant difference in metal ion levels (chromium, p = 0.82; cobalt, p = 0.40) or head wear rate (p = 0.14) between the two groups. The ASR had a significantly increased rate of wear of the acetabular component (p = 0.03) and a significantly increased occurrence of edge loading (p <
0.005), which can be attributed to differences in design between the ASR and BHR. The effects of differences in design on the
Large-head metal-on-metal total hip replacement has a failure rate of almost 8% at five years, three times the revision rate of conventional hip replacement. Unexplained pain remains a feature of this type of arthroplasty. All designs of the femoral component of large-head metal-on-metal total hip replacements share a unique characteristic: a subtended angle of 120° defining the proportion of a sphere that the head represents. Using MRI, we measured the contact area of the iliopsoas tendon on the femoral head in sagittal reconstruction of 20 hips of patients with symptomatic femoroacetabular impingement. We also measured the articular extent of the femoral head on 40 normal hips and ten with cam-type deformities. Finally, we performed virtual hip resurfacing on normal and cam-type hips, avoiding overhang of the metal rim inferomedially. The articular surface of the femoral head has a subtended angle of 120° anteriorly and posteriorly, but only 100° medially. Virtual surgery in a normally shaped femoral head showed a 20° skirt of metal protruding medially where iliopsoas articulates. The excessive extent of the large-diameter femoral components may cause iliopsoas impingement independently of the acetabular component. This may be the cause of postoperative pain with these implants.
We retrospectively analysed concentrations of chromium and cobalt ions in samples of synovial fluid and whole blood taken from a group of 92 patients with failed current-generation metal-on-metal hip replacements. We applied acid oxidative digestion to our trace metal analysis protocol, which found significantly higher levels of metal ion concentrations in blood and synovial fluid than a non-digestive method. Patients were subcategorised by mode of failure as either ‘unexplained pain’ or ‘defined causes’. Using this classification, chromium and cobalt ion levels were present over a wider range in synovial fluid and not as strongly correlated with blood ion levels as previously reported. There was no significant difference between metal ion concentrations and manufacturer of the implant, nor femoral head size below or above 50 mm. There was a moderately positive correlation between metal ion levels and acetabular component inclination angle as measured on three-dimensional CT imaging. Our results suggest that acid digestion of samples of synovial fluid samples is necessary to determine metal ion concentrations accurately so that meaningful comparisons can be made between studies.
Lately, concerns have arisen following the use of large metal-on-metal bearings in hip replacements owing to reports of catastrophic soft-tissue reactions resulting in implant failure and associated complications. This review examines the literature and contemporary presentations on current clinical dilemmas in metal-on-metal hip replacement.
We measured the orientation of the acetabular and femoral components in 45 patients (33 men, 12 women) with a mean age of 53.4 years (30 to 74) who had undergone revision of metal-on-metal hip resurfacings. Three-dimensional CT was used to measure the inclination and version of the acetabular component, femoral version and the horizontal femoral offset, and the linear wear of the removed acetabular components was measured using a roundness machine. We found that acetabular version and combined version of the acetabular and femoral components were weakly positively correlated with the rate of wear. The acetabular inclination angle was strongly positively correlated with the rate of wear. Femoral version was weakly negatively correlated with the rate of wear. Application of a threshold of >
5 μm/year for the rate of wear in order to separate the revisions into low or high wearing groups showed that more high wearing components were implanted outside Lewinnek’s safe zone, but that this was mainly due to the inclination of the acetabular component, which was the only parameter that significantly differed between the groups. We were unable to show that excess version of the acetabular component alone or combined with femoral version was associated with an increase in the rate of wear based on our assessment of version using CT.
This study compared component wear rates and pre-revision blood metal ions levels in two groups of failed metal-on-metal hip arthroplasties: hip resurfacing and modular total hip replacement (THR). There was no significant difference in the median rate of linear wear between the groups for both acetabular (p = 0.4633) and femoral (p = 0.0872) components. There was also no significant difference in the median linear wear rates when failed hip resurfacing and modular THR hips of the same type (ASR and Birmingham hip resurfacing (BHR)) were compared. Unlike other studies of well-functioning hips, there was no significant difference in pre-revision blood metal ion levels between hip resurfacing and modular THR. Edge loading was common in both groups, but more common in the resurfacing group (67%) than in the modular group (57%). However, this was not significant (p = 0.3479). We attribute this difference to retention of the neck in resurfacing of the hip, leading to impingement-type edge loading. This was supported by visual evidence of impingement on the femur. These findings show that failed metal-on-metal hip resurfacing and modular THRs have similar component wear rates and are both associated with raised pre-revision blood levels of metal ions.
Data on retrieval analysis of current generation metal on metal hip replacements is scarce. Such analysis may help to reduce the incidence of failure and revision procedures. Our aim was to investigate the wear characteristics of explanted (ie failed) metal on metal (MOM) acetabular components in terms of; 1) wear rate; and 2) distribution of the wear (specifically edge loading). 30 hips were collected from 20 centres. The types of prostheses were: 15 BHR; 10 Cormet and 5 ASR. Wear of the acetabular components of the prostheses was measured using an out of roundness (Rondcom 60A) machine. We recorded the implantation and removal date of each hip. The median linear wear rate was 7.32μm/year; this is at least 3 times greater than steady state wear rates reported for similar components worn in hip simulator studies. For 24 out of 30 cups, the greatest linear wear was recorded at the cup edge. Failed metal-on-metal acetabular components were associated with higher than expected wear rates. The highest wear was seen closest to the cup edge in the majority of patients suggesting edge loading had occurred and probably explained the high wear rates. Accurate cup placement (to avoid edge loading) may reduce the failure of MOM hips.
Radiological measurements are an essential component of the assessment of outcome following knee arthroplasty. However, plain radiographic techniques can be associated with significant projectional errors because they are a two-dimensional (2D) representation of a three-dimensional (3D) structure. Angles that are considered within the target zone on one film may be outside that zone on other films. Moreover, these parameters can be subject to significant inter-observer differences when measured. The aim of our study therefore was to quantify the variability between observers evaluating plain radiographs following Unicompartmental knee arthroplasty. Twenty-three observers, made up of Orthopaedic Consultants and trainees, were asked to measure the coronal and sagittal alignment of the tibial and femoral components from the post-operative long-leg plain radiograph of a Unicompartmental knee arthroplasty. A post-operative CT scan using the low dose Imperial knee protocol was obtained as well and analysed with 3D reconstruction software to measure the true values of these parameters. The accuracy and spread of the pain radiographic measurements were then compared with the values obtained on the CT. On the femoral side, the mean angle in coronal alignment was 1.5° varus (Range 3.8, SD 1, min 0.1, max 3.9), whereas the mean angle in sagittal alignment was 8.6° of flexion (Range 7.5, SD 1.5, Min 3.7, Max 11.2). The true values measured with CT were 2.4° and 11.0° respectively. As for the tibial component, the mean coronal alignment angle was 89.7° (Range 11.6, SD 3.3, Min 83.8, Max 95.4), and the mean posterior slope was 2.4° (Range 8.7, SD 1.6, Min -2, Max 6.7). The CT values for these were 87.6° and 2.7° respectively. We conclude that the plain radiographic measurements had a large scatter evidenced by the wide ranges in the values obtained by the different observers. If only the means are compared, the plain radiographic values were comparable with the true values obtained with CT (that is; accuracy was good) with differences ranging from 0.3° to 2.4°. The lack of precision can be avoided with the use of CT, particularly with the advent of low-dose scanning protocols.
We carried out a cross-sectional study with analysis of the demographic, clinical and laboratory characteristics of patients with metal-on-metal hip resurfacing, ceramic-on-ceramic and metal-on-polyethylene hip replacements. Our aim was to evaluate the relationship between metal-on-metal replacements, the levels of cobalt and chromium ions in whole blood and the absolute numbers of circulating lymphocytes. We recruited 164 patients (101 men and 63 women) with hip replacements, 106 with metal-on-metal hips and 58 with non-metal-on-metal hips, aged <
65 years, with a pre-operative diagnosis of osteoarthritis and no pre-existing immunological disorders. Laboratory-defined T-cell lymphopenia was present in13 patients (15%) (CD8+ lymphopenia) and 11 patients (13%) (CD3+ lymphopenia) with unilateral metal-on-metal hips. There were significant differences in the absolute CD8+ lymphocyte subset counts for the metal-on-metal groups compared with each control group (p-values ranging between 0.024 and 0.046). Statistical modelling with analysis of covariance using age, gender, type of hip replacement, smoking and circulating metal ion levels, showed that circulating levels of metal ions, especially cobalt, explained the variation in absolute lymphocyte counts for almost all lymphocyte subsets.