Biological fixation through bone ingrowth and ongrowth to implants can be achieved with a variety of surface treatments and technologies. This study evaluated the effect of two different three dimensional surface coatings for CoCr where porosity was controlled through the use of different geometry of CoCr beads in the sintering process. Test specimens in Group A were coated with conventional spherical porous-bead technology. The porous coating technology used on Group B was a variation of the conventional porous-bead technology. Instead of spherical beads, cobalt-chromium particles in irregular shapes were sieved for a particular size range, and were sintered onto the specimen substrate using similar process as Group A. The geometry and the size variation of the particles resulted in a unique 3D porous structure with widely interconnected pores. Three implants were placed bicortically in the tibia. Two implants were placed in the cancellous bone of the medial distal femur and proximal tibia bilaterally with 4 implantation conditions (2 mm gap, 1 mm gap line-to-line, and press fit). Animals were euthanized at 4 or 12 weeks for standard mechanical, histological and histomorphometric endpoints.Introduction
Methods