header advert
Results 1 - 4 of 4
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 120 - 120
23 Feb 2023
Guo J Blyth P Baillie LJ Crawford HA
Full Access

The treatment of paediatric supracondylar humeral fractures is likely one of the first procedures involving X-ray guided wire insertion that trainee orthopaedic surgeons will encounter. Pinning is a skill that requires high levels of anatomical knowledge, spatial awareness, and hand-eye coordination. We developed a simulation model using silicone soft-tissue and 3D-printed bones to allow development and practice of this skill at no additional risk to patients. For this model, we have focused on reusability and lowering raw-material costs without compromising fidelity.

To achieve this, the initial bone model was extracted from open-source computed tomography scans and modified from adult to paediatric size. Muscle of appropriate robustness was then sculpted around the bones using 3D modelling software. A cutaneous layer was developed to mimic oedema using clay sculpturing on a plaster-casted paediatric forearm. These models were then used for 3D-printing and silicone casting respectively. The bone models were printed with settings to imitate cortical and cancellous densities and give high-fidelity tactile feedback upon drilling. Each humerus costs NZD $0.30 in material to print and can be used 1–3 times. Silicone casting of the soft-tissue layers imitates differing relative densities between muscle and oedematous cutaneous tissue, thereby increasing skill necessary to accurately palpate landmarks. Each soft-tissue sleeve cost NZD $70 in material costs to produce and can be used 20+ times.

The resulting model is modular, reusable, and replaceable, with each component standardised and easily reproduced. It can be used to practice land-mark palpation and Kirschner wire pinning and is especially valuable in smaller centres which may not be able to afford traditional Saw Bones models. This low-cost model thereby improves equity while maintaining quality of simulation training.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 108 - 108
10 Feb 2023
Guo J Blyth P Clifford K Hooper N Crawford H
Full Access

Augmented reality simulators offer opportunities for practice of orthopaedic procedures outside of theatre environments. We developed an augmented reality simulator that allows trainees to practice pinning of paediatric supracondylar humeral fractures (SCHF) in a radiation-free environment at no extra risk to patients. The simulator is composed of a tangible child's elbow model, and simulated fluoroscopy on a tablet device. The treatment of these fractures is likely one of the first procedures involving X-ray guided wire insertion that trainee orthopaedic surgeons will encounter. This study aims to examine the extent of improvement simulator training provides to real-world operating theatre performance.

This multi-centre study will involve four cohorts of New Zealand orthopaedic trainees in their SET1 year. Trainees with no simulator exposure in 2019 - 2021 will form the comparator cohort. Trainees in 2022 will receive additional, regular simulator training as the intervention cohort. The comparator cohort's performance in paediatric SCHF surgery will be retrospectively audited using routinely collected operative outcomes and parameters over a six-month period. The performance of the intervention cohorts will be collected in the same way over a comparable period. The data collected for both groups will be used to examine whether additional training with an augmented reality simulator shows improved real-world surgical outcomes compared to traditional surgical training. This protocol has been approved by the University of Otago Health Ethics committee, and the study is due for completion in 2024.

This study is the first nation-wide transfer validity study of a surgical simulator in New Zealand. As of September 2022, all trainees in the intervention cohort have been recruited along with eight retrospective trainees via email. We present this protocol to maintain transparency of the prespecified research plans and ensure robust scientific methods. This protocol may also assist other researchers conducting similar studies within small populations.


Bone & Joint Research
Vol. 9, Issue 10 | Pages 731 - 741
28 Oct 2020
He Z Nie P Lu J Ling Y Guo J Zhang B Hu J Liao J Gu J Dai B Feng Z

Aims

Osteoarthritis (OA) is a disabling joint disorder and mechanical loading is an important pathogenesis. This study aims to investigate the benefits of less mechanical loading created by intermittent tail suspension for knee OA.

Methods

A post-traumatic OA model was established in 20 rats (12 weeks old, male). Ten rats were treated with less mechanical loading through intermittent tail suspension, while another ten rats were treated with normal mechanical loading. Cartilage damage was determined by gross appearance, Safranin O/Fast Green staining, and immunohistochemistry examinations. Subchondral bone changes were analyzed by micro-CT and tartrate-resistant acid phosphatase (TRAP) staining, and serum inflammatory cytokines were evaluated by enzyme-linked immunosorbent assay (ELISA).


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 9 | Pages 1145 - 1148
1 Sep 2011
Nie YX Guo J Knight DJ Porter DE