Exercise deters systemic diseases such as osteoporosis, sarcopenia, diabetes and obesity. Brief daily periods of low intensity vibration (LIV; <0.4g) is anabolic to bone and muscle, an adaptive response achieved in part by biasing mesenchymal stem cell (MSC) fate selection towards forming higher order connective tissues. In the clinic, LIV has protected the musculoskeletal system even under severe challenges such as Crohn Disease, Cerebral Palsy, and end-stage renal disease. Low magnitude mechanical signals also suppress adipogenesis in the mouse, with reductions in subcutaneous and visceral fat. The starkly distinct response of these tissues (augment bone & muscle; suppress fat) suggests that LIV influences the differentiation pathway of MSCs. Extending this diet induced obesity model to 7 months increased total adiposity, accelerated age-related loss of trabecular bone and severely reduced B & T-cell number in the marrow and blood, shifting hematopoietic stem cells (HSC) towards the myeloid lineage. LIV introduced at 4 months rescued bone and B-cells to those levels measured in regular diet controls. These data emphasise why inactivity can promote osteoporosis, diabetes and obesity, and why a sedentary individual is predisposed to disease sequelae. Protection of MSC and HSC populations by mechanical signals may represent a unique strategy by which adiposity can be suppressed, the immune system protected, and a musculoskeletal system enhanced.