Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 59 - 59
22 Nov 2024
Peterlin AA Gottlieb H Birch JM Jensen LK
Full Access

Aim

The osteolytic process of osteomyelitis is, according to textbooks, caused by increased osteoclast activity due to RANKL production by osteoblasts. However, recent findings contradict this theory. Therefore, the aim was to investigate, in a porcine osteomyelitis model, how osteolysis is affected by massive inflammation and RANKL blocking, respectively. In parallel, patients with chronic osteomyelitis, diabetes, foot osteomyelitis, and fracture related infections (FRI) were included for advanced histological analysis of osteolysis.

Methods

In pigs, a tibial implant cavity was created and inoculated with 104 CFU of Staphylococcus aureus: Group A (n=7). Group B (n=7); + 1cm3 spongostan into the cavity. Group C (n=4); + systemic Denosumab treatment. Spongostan was used as an avascular material to support bacterial growth and thus increase the inflammatory response. Denosumab treatment was administrated to suppress osteoclast activity by RANKL inhibition (as in osteoporotic patients). The volume of osteolysis was accessed by CT scans. Immunohistochemistry with antibodies towards Cathepsin K was used to identify osteoclasts within the bone lesions. Briefly, the number of Cathepsin K positive cells, i.e., both precursors and bone resorbing osteoclasts, respectively, were counted in 10 high power fields (400x). In total, 50 bone infection patients were included (Herlev Hospital). From each patient five parried samples were taken for histology and microbiology, respectively. Histopathology, CT osteolysis volume estimation, and molecular expression of osteoclasts and inflammatory markers are ongoing. One FRI patient was osteoporotic and treated with Denosumab for 6 years.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_17 | Pages 76 - 76
24 Nov 2023
Hesselvig AB Bjarnsholt T Jørgensen A Gottlieb H
Full Access

Aim

To evaluate whether sonication of implant material and subsequent culturing add clinical relevance to culturing of tissue biopsies for improved antibiotic treatment in treatment of bone and joint infection.

Method

A retrospective examination of patients’ charts and microbiological analyses in patients who had explanted material (plates, screws, k-wires and prostheses) send for sonication between December 2020 and April 2022.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_10 | Pages 90 - 90
1 Oct 2022
Jensen LK Jensen HE Gottlieb H
Full Access

Aim

To describe the histopathology of the first and last debrided bone tissue in chronic osteomyelitis and answer the following research question; is the last debrided bone tissue viable and without signs of inflammation?

Method

In total, 15 patients with chronic osteomyelitis were allocated to surgical treatment using a one stage protocol including extensive debridement. Suspected infected bone tissue eradicated early in the debridement procedure was collected as a clearly infected sample (S1). Likewise, the last eradicated bone tissue was collected as a suspected non-infected sample (S2), representing the status of the bone void. In all cases, the surgeon debrided the bone until visual confirmation of healthy bleeding bone. The samples were processed for histology, i.e. decalcification and paraffin embedding, followed by cutting and staining with Haematoxylin and Eosin. Immunohistochemistry with MAC-387 antibodies towards the calprotectin of neutrophil granulocytes (NGs) was also performed and used for estimation of a neutrophil granulocyte (NG) score (0, 1, 2 or 3), by the method described for fracture related infections (1).


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 47 - 47
1 Dec 2021
Lüthje FL Skovgaard K Jensen HE Heegaard P Gottlieb H Kirketerp-M⊘ller K Blirup SA Jensen LK
Full Access

Aim

The liver is the major source of acute phase proteins (APPs) and serum concentrations of several APPs are widely used as markers of inflammation and infection. The aim of the present study was to explore if a local extra hepatic osseous acute phase response occurs during osteomyelitis.

Method

The systemic (liver tissue and serum) and local (bone tissue) expression of several APPs during osteomyelitis was investigated with qPCR and ELISA in a porcine model of implant associated osteomyelitis (IAO) at 5, 10 and 15 days after inoculation with S. aureus or saline, respectively. Additionally, samples were also collected from normal heathy pigs and pigs with spontaneous, chronic, haematogenous osteomyelitis. Afterwards, immunohistochemistry towards different upregulated APPs was performed on the porcine osteomyelitis lesions and on bone biopsies from human patients with chronic osteomyelitis.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 394 - 401
1 Jul 2020
Blirup-Plum SA Bjarnsholt T Jensen HE Kragh KN Aalbæk B Gottlieb H Bue M Jensen LK

Aims

CERAMENT|G is an absorbable gentamicin-loaded biocomposite used as an on-site vehicle of antimicrobials for the treatment of chronic osteomyelitis. The purpose of the present study was to investigate the sole effect of CERAMENT|G, i.e. without additional systemic antimicrobial therapy, in relation to a limited or extensive debridement of osteomyelitis lesions in a porcine model.

Methods

Osteomyelitis was induced in nine pigs by inoculation of 104 colony-forming units (CFUs) of Staphylococcus aureus into a drill hole in the right tibia. After one week, the pigs were allocated into three groups. Group A (n = 3) received no treatment during the study period (19 days). Groups B (n = 3) and C (n = 3) received limited or extensive debridement seven days postinoculation, respectively, followed by injection of CERAMENT|G into the bone voids. The pigs were euthanized ten (Group C) and 12 (Group B) days after the intervention.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_14 | Pages 77 - 77
1 Dec 2019
Jensen LK Blirup SA Aalbæk B Bjarnsholt T Kragh KN Gottlieb H Bue M Jensen HE
Full Access

Aim

To study the antimicrobial effect of a gentamicin loaded bio-composite bone void filler in relation to a limited or extensive debridement of osteomyelitis lesions, respectively.

Methods

Nine pigs were inoculated into the right proximal tibial bone with a high virulent gentamicin sensitive strain of Staphylococcus aureus (104 CFU). Seven days after inoculation, Group A pigs (n=3) were exposed to a limited debridement of the bone lesion, whereas Group B pigs (n=3) were exposed to an extensive debridement. The bone defects of Groups A and B were filled with (2–5 ml) of an absorbable gentamicin (175 mg/10 mL) loaded bio-composite. The animals of Group A and B were euthanized 12 days after revision surgery. Group C animals did not undergo revision surgery and were euthanized seven (n=1) or nineteen (n=2) days post inoculation in order to follow the development of the untreated infection. None of the animals were treated with systemic antimicrobials. All bones were exposed to a post mortem CT scan and rigours pathological examinations. The surrounding bone tissue and the bio-composite were sampled for microbiology.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_17 | Pages 49 - 49
1 Dec 2018
Obinah MPB Brorson S Gottlieb H
Full Access

Aim

Chronic osteomyelitis (OM) is usually treated with surgical excision of infected bone and subsequent dead space management to prevent local recurrence. We report outcome after antibiotic loaded biocomposite (ALB)1 for management of infected bone defects.

Method

We report a consecutive series of 97 patients with chronic OM treated at one institution by a multidisciplinary team, using a single-stage revision protocol inspired by a recently published study2.

The treatment protocol includes surgical debridement, tissue sampling, dead-space management using the ALB, stabilization and empirical antibiotic therapy adjusted based on culturing. Closure was performed directly, with a local flap, a free flap or secondarily.

This series includes all patients operated using the ALB at our institution, since its implementation 26 months ago. The senior author (HG) performed 65 (67%) of the operations. The remaining procedures were performed by 14 different surgeons.


Orthopaedic Proceedings
Vol. 93-B, Issue SUPP_II | Pages 204 - 204
1 May 2011
Gottlieb H Johansen J Olsen B Lausten G Johnsen H Kastrup J
Full Access

Summary: Investigation of the specific roles of circulating mesenchymal progenitor cells, YKL-40 and IL-6 during regeneration of planned or traumatic bone traumas.

Introduction: YKL-40 is a growth factor with possible involvement in regeneration of mesenchymal tissue. IL-6 is a pro-inflammatory marker. Mesenchymal progenitor cells (MPC), is a subpopulation of mononuclear cells (MNC), involved in bone regeneration. The aim was to investigate the involvement of YKL-40 in bone regeneration by analysis of the posttraumatic changes in s-YKL-40, s-IL-6, MNC and MPC in patients with planned or traumatic bone traumas.

Materials and Methods: Two cohorts with a total of 50 patients, with either ankle- (Cohort 1: N=13) or hip fracture (Cohort 1: N=10, cohort 2: N=8) or planned hip replacements (Cohort 1: N=9, cohort 2: N=10) were included. Contemporary healthy controls (N=17) were also included. 8 blood samples were taken day 1, 3, 7, 14, 21, 28, 42 and 84 after bone trauma from patients in cohort 1. Patients in cohort 2 had the same blood samples taken, including two additional ones taken 3–5 and 12–15 hours after hip fracture. MNC was counted, Phenotype of MPCs were determined by flow cytometry, s-YKL-40 and s-IL-6 quantified by ELISA.

Results: Changes in MNC, YKL-40 and IL-6 correlated to the magnitude of the traumas, with larger responses in patients with hip fractures or planned hip replacements compared to patients with ankle fractures (MNC: p=0.0006; YKL-40: p=0.0004; IL-6: p< 0.0001). S-YKL-40 further correlated to the type of bone trauma, documented by different levels of YKL-40 in patients with hip fractures or -planned hip replacements, from day 14 to 42 after fracture (Cohort 1: p=0.04; Cohort 2: p=0.005). The posttraumatic changes in YKL-40 and IL-6 did not correlate. Age and number of circulating MNC (p=0.0003, r=−0.61) were inverse correlated. S-YKL-40 correlated positively to a population of circulating cells with a specific phenotype of CD45neg, CD105pos-MNCs (r=0.26, P=0.01) and CD45neg, CD144pos-MNCs (r=0.27, P=0.01). These phenotypes are associated with MPCs. This correlation was only seen in patients with hip fractures.

Conclusions: Circulating MNC, YKL-40 and IL-6 changed posttraumatic according to the magnitude of the trauma. Serum YKL-40 also changed according to the type of bone trauma during early bone regeneration, indicating a pivotal quantitative role for YKL-40 in bone regeneration.

The positive correlation between YKL-40 and circulating CD45neg, CD105pos, CD144pos-MNCs during early ossification in hip fractures is a novel finding, which underlines the important role of these cells and YKL-40 during bone regeneration.