Advertisement for orthosearch.org.uk
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 4 - 4
1 Jan 2016
Latham J Goriainov V Pedersen R Gadegaard N Dunlop D Oreffo R
Full Access

Background

In 2012, the National Joint Registry recorded 86,488 primary total hip replacements (THR) and 9,678 revisions (1). To date aseptic loosening remains the most common cause of revision in hip and knee arthroplasty, accounting for 40% and 32% of all cases respectively and emphasising the need to optimise osseointegration in order to reduce revisions. Clinically, osseointegration results in asymptomatic stable durable fixation of orthopaedic implants. Osseointegration is a complex process involving a number of distinct mechanisms affected by the implant surface topography, which is defined by surface orientation and surface roughness. Micro- and nano-topography levels have discrete effects on implant osseointegration and yet the role on cell function and subsequent bone implant function is unknown. Nanotopography such as collagen banding is a critical component influencing the SSC niche in vivo and has been shown to influence a range of cell behaviours in vitro (2,3). We have used unique fabricated nanotopographical pillar substrates to examine the function of human bone stem cells on titanium surfaces.

Aim

To investigate the effect of nanotopographical cues on adult skeletal stem cell (SSC) fate, phenotype and function within in-vitro environments.