header advert
Results 1 - 1 of 1
Results per page:
Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXXVIII | Pages 8 - 8
1 Sep 2012
Gleeson JP Lyons F Partap S O'Brien FJ
Full Access

Purpose

Traditionally, the gold standard for bone grafting has been either autografts or allografts. Whilst autografts are still widely used, drawbacks such as donor site morbidity are shifting the market rapidly toward the use of orthobiologic bone graft substitutes. This study investigated the in vivo performance of a novel (W02008096334) collagen-hydroxyapatite (CHA) bone graft substitute material as an osteoinductive tissue engineering scaffold. This highly porous CHA scaffold offers significantly increased mechanical strength over collagen-only scaffolds while still exhibiting an extremely high porosity (≈ 99%), and an osteoinductive hydroxyapatite phase [1]. This study assessed the ability of the CHA scaffolds to heal critical-sized (15 mm) long bone segmental defects in vivo, as a viable alternative to autologous bone grafts.

Method

Collagen-HA (CHA) composite scaffolds were fabricated based on a previously-described freeze-drying technique [1]. After freeze-drying, these scaffolds were subjected to a dehydrothermal treatment and subsequently chemically crosslinked using EDAC. In vivo performance was assessed using a critical size segmental radial defect (15 mm) introduced into 16 young adult New Zealand White Rabbits under Irish Government license. Animals were divided into three groups; (i) an empty defect group (negative control), (ii) an autogenous bone graft group (positive control) and (iii) a CHA scaffold group (CHA). Segmental defect healing in all animals was assessed using plain X-Ray analysis, at four time-points (0, 6, 12 and 16 weeks). MicroCT and histological analysis were carried out at week 16.