The risk for late periprosthetic fractures is higher in patients treated for a neck of femur fracture compared to those treated for osteoarthritis. It has been hypothesised that osteopenia and consequent decreased stiffness of the proximal femur are responsible for this. We investigated if a femoral component with a bigger body would increase the torque to failure in a biaxially loaded composite sawbone model. A biomechanical composite sawbone model was used. Two different body sizes (Exeter 44-1 vs 44-4) of a polished tapered cemented stem were implanted by an experienced surgeon, in 7 sawbones each and loaded at 40 deg/s internal rotation until failure. Torque to fracture and fracture energy were measured using a biaxial materials testing device (Instron 8874). Data are non-parametric and tested with Mann-Whitney U-test.Introduction:
Method:
In an attempt to reduce stress shielding in the proximal femur multiple new shorter stem design have become available. We investigated the load to fracture of a new polished tapered cemented short stem in comparison to the conventional polished tapered Exeter stem. A total of forty-two stems, twenty-one short stems and twenty-one conventional stems both with three different offsets were cemented in a composite sawbone model and loaded to fracture.Introduction:
Method:
This prospective cohort study investigated whether the use of preoperative anticoagulants is an independent risk factor for the outcomes of surgical treatment of patients with a neck of femur fracture. Data was obtained from a prospectively collected database. All patients admitted for a neck of femur fracture between Nov 2010 and Oct 2011 were included. This resulted in three hundred twenty-eight patients with 330 neck of femur fractures. Four groups were defined; patients preoperatively (i) on aspirin (n = 105); (ii) on clopidogrel (n = 28); (iii) on warfarin (n = 30); and (iv) without any anticoagulation history (n = 167, the control group). The non-warfarin group included the aspirin group, clopidogrel group and the control group. Primary outcome was the in-hospital mortality. Secondary outcomes were the postoperative complications, return to theatre and length of stay.Aim:
Methods:
Contemporary knee implants use a variety of methods to control tibiofemoral motions. Posterior stabilized implants have a post and cam to force the femur posterior with flexion. Most posterior cruciate retaining designs rely solely on this ligament and symmetric tibial surfaces to control tibiofemoral translations. However, many studies have demonstrated poor control of tibiofemoral motion in PCL retaining knees. One strategy to augmenting PCL function is to provide a gait-congruent lateral articulation providing definitive stability in extension while allowing lateral condylar translation in deep flexion. It is unknown whether this design strategy, essentially substituting for the ACL, allows the PCL to function more normally. Fifteen knees in ten patients with a fixed-bearing, PCL retaining, lateral pivot arthroplasty were observed during maximum flexion kneeling and lunging using fluoroscopy. The tibial insert provides a fully conforming lateral articulation from 0°–70° flexion, allowing lateral AP translation at greater flexion. Recruited on the basis of combined KSS scores >
180 points, patients averaged 72 years, 27.5 BMI, and 12 months post-op. Shape matching techniques were used to determine the 3D pose of the implant components. Skeletal flexion during kneeling averaged 134° (117°–156°) with 11° tibial internal rotation. Medial condylar contact was 3mm posterior, and lateral contact was 11 mm posterior to the tibial AP midpoint. Skeletal flexion during lunging averaged 122° (106°–146°) with 11° tibialinternal rotation. Medial condylar contact was 1mm posterior, and lateral condylar contact was 9mm posterior to the tibial AP midpoint. Knees with lateral pivot arthroplasty exhibited flexion comparable to the best reported results in North American patients. Tibial rotation was statistically greater than has been reported for symmetric posterior stabilized or PCL retaining implants for the same activities. Posterior translation of the condyles with flexion beyond the range of full articular congruity is consistent with relatively normal PCL function.