Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 488 - 488
1 Dec 2013
Racasan R Fleming L Bills P Skinner J Hart A Blunt L
Full Access

Background

The changes in surface roughness occurring during the wear process at the bearing surface are of great importance in trying to understand the failure mechanism of large head metal-on-metal hip replacements. The aim of the study is to identify and characterise the areal surface parameter variation between the worn and unworn areas. Surface topography variations at the bearing surface have an effect on the lubrication regime [1]. In vitro tests of these components have suggested a “self-polishing” of the surface [2]. Traditionally Ra has been used as a descriptor of surface texture. Considering the high standard of manufacturing to which these components are produced, Ra is not sufficient to describe surface morphology which requires spatial information which can only be achieved through the use of areal parameters.

Methods

A total of 50 retrieved metal-on-metal hip replacements were assessed using white light scanning interferometry (Talysurf CCI, Ametek, UK) to determine the difference in the areal surface topography parameters between the worn and unworn regions of the bearing surface. The worn area was identified by use of a previously described method [3] to produce a wear map of the bearing surface, this allows the identification of the regions of interest. A series of six measurements were taken on each component (figure 1) comprising of: 2 measurements at the equator of the head representing the unworn region, one measurement at the pole and just off centre from the pole and the rest of the measurements were taken inside and at the boundary of the wear area. Each measurement covered an area of 1 mm2 therefore it is crucial that the location of the measurement be established as accurately as possible.

Data was analysed to determine the most relevant parameters that could be used to describe and highlight the changes in surface roughness that occur during the wear process.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_20 | Pages 6 - 6
1 Apr 2013
Sisodial G Cam NB Fleming L Elnaggar M Chakrabarty G Blunt L
Full Access

Aim

To undertake a biomechanical study to determine the existence of any difference in the early tibial component fixation to bone, between two widely used techniques of cementation, which may confer an influence on implant survival.

Method

20 tibial saw bones were prepared by standard methods using extramedullary instrumentation to receive a fixed bearingtibial component (PFC, DePuy). Under controlled laboratory conditions, thetibial trayswere implanted with CMW cement using either of the two following cementation techniques (10 implants in each group): Full cementation–application of cement to the undersurface of the tibial tray, the keel, the cut surface of the tibia and its stem hole. Surface cementation – application of cement only to the undersurface of thetibial tray and the cut surface of the tibia. 72 hours after implantation, the fixation of the cemented components was assessed by determining the load to failure under controlled tensile stresses (using an Instron Electro-mechanical tensile tester).