Advertisement for orthosearch.org.uk
Results 1 - 2 of 2
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 79 - 79
19 Aug 2024
Hormi-Menard M Wegrzyn J Girard J Faure P Duhamel A Erivan R Migaud H
Full Access

The results of total hip arthroplasty (THA) revisions to correct leg length discrepancy (LLD) are not clear, with only two former limited series (< 25 patients). Therefore, we conducted a retrospective study of THA revisions for LLD to determine: 1) the change in LLD, 2) the function outcomes and whether obtaining equal leg lengths influenced function, 3) the complication and survival rates.

This multicenter study included 57 patients: 42 THA revisions for limb shortening and 15 revisions for limb lengthening. LLD was measured on conventional radiographs and EOS. The Oxford-12 and FJS outcome scores were collected and the number of patients achieving the Oxford-12 MCID.

The revisions were carried out a mean of 2.8 years after the index THA. The median LLD decreased from 7.5 mm (IQR: [5;12]) to 1 mm (IQR: [0.5;2.5]) at follow-up (p=0.0002). Overall, 55 of 57 patients (96%) had < 5 mm LLD at follow-up and 12 patients (21%) had equal leg lengths. The complication rate was 25%: 12 mechanical complications (8 periprosthetic femoral fractures, 2 stem loosening and 1 cup loosening, 1 dislocation) and 1 periprosthetic infection. The patient satisfaction was high with a median FJS of 79.2/100 and 77% of patients reached the Oxford-12 MCID. Lengthening procedures had significantly worst function than shortening (38% vs 91% of patients achieving the Oxford-12 MCID (p=0.0004)). Survivorship was 85% (95% CI: 77.9 – 92.5) at 2 years and 77% (95% CI: 66.3 – 87.1) at 4.6 years when using re-revision for any reason as the endpoint.

When LLD after THA does not respond to conservative management, revision THA should be considered. Although revision THA for LLD improved medium-term functional outcomes with a high patient satisfaction rate, especially for shortening procedures, the complication rate was high, particularly related to periprosthetic femoral fracture.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_9 | Pages 19 - 19
1 May 2017
Descamps S Awitor O Raspal V Erivan R Boisgard S
Full Access

Background

Medical applications of nanotechnology are promising because it allows the surface of biomaterial to be tailored to optimise the interfacial interaction between the biomaterial and its biological environment. Such interfaces are of interest in the domain of orthopaedic surgery as they could have anti-bacterial functions or could be used as drug delivery systems. The development of orthopaedics is moving towards better integration of biology in implants and surgical techniques, but the mechanical properties of implanted materials are still important for orthopaedic applications. During clinical implantation, implants are subjected to large mechanical stresses. In order to obtain the best performance during clinical use, mechanical properties of implants need to be investigated and understood.

Method

We modified the topography of commercial titanium orthopaedic screws using electrochemical anodization in a 0.4 wt% hydrofluoric acid solution to produce titanium dioxide nanotube layers. The morphology of the nanotube layers were characterised using scanning electron microscopy. The mechanical properties of the nanotube layers were investigated by screwing and unscrewing an anodized screw into several different types of human bone while the torsional force applied to the screwdriver was measured using a torque screwdriver. The range of torsional force applied to the screwdriver was between 5 and 80 cN·m. Independent assessment of the mechanical properties of the same surfaces was performed on simple anodized titanium foils using a triboindenter.